11.某商場舉行抽獎活動,規(guī)則如下:甲箱子里裝有3個白球和2個黑球,乙箱子里裝有1個白球和3個黑球,這些球除顏色外完全相同;每次抽獎都從這兩個箱子里各隨機地摸出2個球,若摸出的白球個數(shù)不少于2個,則獲獎.(每次游戲結(jié)束后將球放回原箱)
(Ⅰ)在一次游戲中,求獲獎的概率;
(Ⅱ)在三次游戲中,記獲獎次數(shù)為隨機變量X,求X的分布列及期望.

分析 (Ⅰ)設(shè)在一次游戲中獲獎為事件A,利用互斥事件概率計算公式能求出獲獎的概率.
(Ⅱ)由題意可知:一次游戲中獲獎的概率為$\frac{3}{5}$,三次游戲,相當(dāng)于進行三次獨立重復(fù)試驗,X可能取的值為0,1,2,3,由此能求出X的分布列和E(X).

解答 解:(Ⅰ)設(shè)在一次游戲中獲獎為事件A,
則P(A)=$\frac{{C}_{3}^{2}{C}_{4}^{2}+{C}_{3}^{1}{C}_{2}^{1}{C}_{3}^{1}}{{C}_{5}^{2}{C}_{4}^{2}}$=$\frac{3}{5}$.…(4分)
(Ⅱ)由題意可知:一次游戲中獲獎的概率為$\frac{3}{5}$,
三次游戲,相當(dāng)于進行三次獨立重復(fù)試驗,X可能取的值為0,1,2,3.…(5分)
P(X=0)=(1-$\frac{3}{5}$)3=$\frac{8}{125}$,…(6分)
P(X=1)=${C}_{3}^{1}×\frac{3}{5}×(1-\frac{3}{5})^{2}$=$\frac{36}{125}$,…(7分)
P(X=2)=${C}_{3}^{2}×(\frac{3}{5})^{2}(1-\frac{3}{5})$=$\frac{54}{125}$,…(8分)
P(X=3)=($\frac{3}{5}$)3=$\frac{27}{125}$.…(9分)
X的分布列為:

X0123
P$\frac{8}{125}$$\frac{36}{125}$$\frac{54}{125}$$\frac{27}{125}$
…(10分)
∴E(X)=$0×\frac{8}{125}+1×\frac{36}{125}+2×\frac{54}{125}+3×\frac{27}{125}$=$\frac{9}{5}$.…(12分)

點評 本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時要認真審題,注意二項分布的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2,|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{19}$,則$\overrightarrow{a}$在$\overrightarrow$上的投影為( 。
A.-$\frac{3}{2}$B.$\frac{3}{2}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖所示程序框圖,若輸入a,b,i的值分別為6,4,1,則輸出a和i的值分別為( 。
A.2,4B.3,4C.2,5D.2,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若兩曲線y=2tanx(0<x<$\frac{π}{2}$),y=3cosx相交于點A,過點A作AH⊥x軸于點H,并與曲線y=4sinx交于點B,則線段BH的長度是$\frac{4\sqrt{10}-4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.有能力互異的3人應(yīng)聘同一公司,他們按照報名順序依次接受面試,經(jīng)理決定“不錄用第一個接受面試的人,如果第二個接受面試的人比第一個能力強,就錄用第二個人,否則就錄用第三個人”,記該公司錄用到能力最強的人的概率為p,錄用到能力中等的人的概率為q,則(p,q)=( 。
A.($\frac{1}{6}$,$\frac{1}{6}$)B.($\frac{1}{2}$,$\frac{1}{6}$)C.($\frac{1}{2}$,$\frac{1}{4}$)D.($\frac{1}{2}$,$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.秦九韶算法是中國南宋時期的數(shù)學(xué)家秦九韶提出的一種多項式簡化算法,對于求一個n次多項式函數(shù)fn(x)=anxn+an-1xn-1+…+a1x+a0的具體函數(shù)值,運用常規(guī)方法計算出結(jié)果最多需要n次加法和$\frac{n(n+1)}{2}$乘法,而運用秦九韶算法由內(nèi)而外逐層計算一次多項式的值的算法至多需要n次加法和n次乘法.對于計算機來說,做一次乘法運算所用的時間比做一次加法運算要長得多,所以此算法極大地縮短了CPU運算時間,因此即使在今天該算法仍具有重要意義.運用秦九韶算法計算f(x)=0.5x6+4x5-x4+3x3-5x當(dāng)x=3時的值時,最先計算的是( 。
A.-5×3=-15B.0.5×3+4=5.5
C.3×33-5×3=66D.0.5×36+4×35=1336.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若曲線f(x)=x4-x在點P處的切線平行于直線3x-y=0,則點P的坐標為(  )
A.(0,0)B.(1,0)C.(1,-3)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如果有理數(shù)m可以表示成2x2-6xy+5y2(其中x、y是任意有理數(shù))的形式,我們就稱m為“世博數(shù)”.
(1)兩個“世博數(shù)”a、b之積也是“世博數(shù)”嗎?為什么?
(2)證明:兩個“世博數(shù)”a、b(b≠0)之商也是“世博數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在等差數(shù)列{an}中,若m+n=2p(m,n,p∈N*),則am+an=2ap.類比上述結(jié)論,在等比數(shù)列{bn}中,若m+n=2p,則得到的結(jié)論是若m+n=2p(m,n,p∈N*),則bm•bn=bp2

查看答案和解析>>

同步練習(xí)冊答案