【題目】選修4-5:不等式選講

已知函數(shù).

I)求證:恒成立;

II)若存在實數(shù),使得,求實數(shù)的取值范圍.

【答案】(I)證明見解析;(II).

【解析】

試題分析:(I)借助題設(shè)條件運用分類整合的數(shù)學思想求解;(II)借助題設(shè)運用絕對值的幾何意義探求.

試題解析:

I時,..............................2分

時,..................................4分

時,,故,

綜合圖象可知的最小值為,故恒成立.........................6分

II)由可得:,...........8分

由絕對值的幾何意義,只需................................10分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某中學一位高三班主任對本班50名學生學習積極性和對待班級工作的態(tài)度進行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如下表所示:

積極參加班級工作

不積極參加班級工作

合計

學習積極性高

18

7

25

學習積極性不高

6

19

25

合計

24

26

50

(1)如果隨機調(diào)查這個班的一名學生,那么抽到不積極參加班級工作且學習積極性不高的學生的概率是多少?

(2)若不積極參加班級工作且學習積極性高的7名學生中有兩名男生,現(xiàn)從中抽取兩名學生參加某項活動,問兩名學生中有1名男生的概率是多少?

(3)學生的學習積極性與對待班極工作的態(tài)度是否有關(guān)系?請說明理由.

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求上的最小值

2)若存在兩個不同的實數(shù),使得,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐,底面,,,,的中點,

(1)求的長;

(2)求二面角的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一名學生每天騎車上學,從他家里到學校的途中有6個交通崗,假設(shè)在每個交通崗遇到紅燈的事件是相互獨立的,并且概率都是.

(1)假設(shè)為這名學生在途中遇到紅燈的次數(shù),求的分布列;

(2)設(shè)為這名學生在首次停車前經(jīng)過的路口數(shù),求的分布列;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若滿足:對任意的,都有恒成立,試確定實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三(1)班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,可見部分如下:

試根據(jù)圖表中的信息解答下列問題:

(1)求全班的學生人數(shù)及分數(shù)在[70,80)之間的頻數(shù);

(2)為快速了解學生的答題情況,老師按分層抽樣的方法從位于[70,80),[80,90)和[90,100]分數(shù)段的試卷中抽取8份進行分析,再從中任選3人進行交流,求交流的學生中,成績位于[70,80)分數(shù)段的人數(shù)X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的離心率為,連接橢圓的四個頂點得到的四邊形的面積為

(1)求橢圓的方程;

(2)設(shè)橢圓的左焦點為,右焦點為,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段的垂直平分線交于點,求點的軌跡的方程;

(3)設(shè)為坐標原點,取上不同于的點,以為直徑作圓與相交另外一點,求該圓面積的最小值時點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地政府調(diào)查了工薪階層人的月工資收人,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖,其中工資收人分組區(qū)間是.(單位:百元)

(1)為了了解工薪階層對工資收人的滿意程度,要用分層抽樣的方法從調(diào)查的人中抽取人做電話詢問,求月工資收人在內(nèi)應抽取的人數(shù);

(2)根據(jù)頻率分布直方圖估計這人的平均月工資為多少元.

查看答案和解析>>

同步練習冊答案