【題目】一名學(xué)生每天騎車上學(xué),從他家里到學(xué)校的途中有6個交通崗,假設(shè)在每個交通崗遇到紅燈的事件是相互獨立的,并且概率都是.

(1)假設(shè)為這名學(xué)生在途中遇到紅燈的次數(shù),求的分布列;

(2)設(shè)為這名學(xué)生在首次停車前經(jīng)過的路口數(shù),求的分布列;

【答案】(1)見解析;(2)見解析.

【解析】試題分析:(1)由題意知根據(jù)獨立重復(fù)試驗 次發(fā)生 次的概率公式求出時概率,進而可得分布列;(2)由題意可得, ,進而可得分布列.

試題解析:(1)將通過每個交通崗看作一次試驗,則遇到紅燈的概率是,故,則, ,所以其分布列如下:

0

1

2

3

4

5

6

(2)根據(jù)題設(shè)條件,隨機變量,其中表示前個路口沒有遇到紅燈,但在第個路口遇到紅燈,那么, ,因此分布列如下:

0

1

2

3

4

5

6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面為直角梯形,

,平面底面,的中點,為正三角形,是棱上的一點(異于端點).

)若中點,求證:平面;

)是否存在點,使二面角的大小為30°.若存在,求出點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐PABCD中,底面ABCD是正方形,側(cè)棱PD垂直于底面ABCD,PDDC,點E是PC的中點

(Ⅰ)求證:PA∥平面EBD;

)求二面角EBDP的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)在點處的切線方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若存在,使得是自然對數(shù)的底數(shù)),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為

)求滿足的概率;

)設(shè)三條線段的長分別為5,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

I)求證:恒成立;

II)若存在實數(shù),使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,直線的極坐標方程為, 的交點為.

(1)判斷點與曲線的位置關(guān)系;

(2)點為曲線上的任意一點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

I)求證:恒成立;

II)若存在實數(shù),使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項均不相等的等差數(shù)列的前五項和,且成等比數(shù)列.

1求數(shù)列的通項公式;

2為數(shù)列的前項和,且存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案