A. | $(0,\sqrt{3})$ | B. | $(-\sqrt{3},0)$ | C. | $(-\sqrt{3},\sqrt{3}]$ | D. | $(-\sqrt{3},\sqrt{3})$ |
分析 $\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}$=(x,y),點C單位圓上的一點,可得x2+y2=1.令x=cosθ,y=sinθ,θ∈[0,π).化為λx+y=λcosθ+sinθ=$\sqrt{{λ}^{2}+1}$sin(θ+φ),由于λx+y最大值小于2,可得$\sqrt{{λ}^{2}+1}$<2,解出即可.
解答 解:∵$\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}$=(x,y),點C單位圓上的一點,
∴x2+y2=1.
令x=cosθ,y=sinθ,θ∈[0,π).
∴λx+y=λcosθ+sinθ=$\sqrt{{λ}^{2}+1}$sin(θ+φ),
∵λx+y最大值小于2,
∴$\sqrt{{λ}^{2}+1}$<2,
解得$-\sqrt{3}<λ<\sqrt{3}$.
∴λ的范圍為$(-\sqrt{3},\sqrt{3})$.
故選:D.
點評 本題考查了向量的坐標(biāo)運算、單位圓的性質(zhì)、和差公式、三角函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k•$\frac{m}{n}$ | B. | k•$\frac{n}{m}$ | C. | k+m-n | D. | 不能估計 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.010 | 0.005 |
k | 1.323 | 2.072 | 2.706 | 3.845 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,3] | B. | (-1,3) | C. | (-∞,-1]∪[3,+∞) | D. | (-∞,-1)∪(3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{9}{4}$,+∞) | B. | [-$\frac{9}{4}$,+∞) | C. | (-$\frac{9}{4}$,-2] | D. | (-$\frac{9}{4}$,-2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com