【題目】某歌手大賽進(jìn)行電視直播,比賽現(xiàn)場(chǎng)有6名特約嘉賓給每位參賽選手評(píng)分,場(chǎng)內(nèi)外的觀眾可以通過(guò)網(wǎng)絡(luò)平臺(tái)給每位參賽選手評(píng)分.某選手參加比賽后,現(xiàn)場(chǎng)嘉賓評(píng)分情況如下表;場(chǎng)內(nèi)外共有數(shù)萬(wàn)名觀眾參與了評(píng)分,組織方將觀眾評(píng)分按照,分組,繪成頻率分布直方圖如下:

嘉賓

評(píng)分

96

95

96

89

97

98

1)從觀眾中任取三人,求這三人中恰有1人分?jǐn)?shù)在2人分?jǐn)?shù)在的概率;

2)從嘉賓中隨機(jī)選3人,記3人中分?jǐn)?shù)不低于96分的人數(shù)為,求的期望;

3)嘉賓評(píng)分的平均數(shù)為,場(chǎng)內(nèi)外的觀眾評(píng)分的平均數(shù)為,試寫(xiě)出的大小關(guān)系(不需要證明).

【答案】1; 22; 3)嘉賓的平均分高于觀眾的平均分.

【解析】

1)根據(jù)頻率分布直方圖,即可求解內(nèi)的概率和在的概率;

2)由題意,得到從嘉賓中隨機(jī)去3人,分?jǐn)?shù)不低于96分的人數(shù)為的可能取值為,求得相應(yīng)的概率,得到隨機(jī)變量的分布列,利用期望的公式,即可求解;

可得,

3)利用平均數(shù)的計(jì)算公式和頻率分布直方圖的平均數(shù)的計(jì)算方法,分別求得的值,即可得到結(jié)論.

1)由題意,根據(jù)頻率分布直方圖可得,在內(nèi)的概率為,在的概率為,所以概率.

2)由題意,6名特約嘉賓中,其中4人的得分不低于96分,2人的得分低于96分,

所以從嘉賓中隨機(jī)選3人,分?jǐn)?shù)不低于96分的人數(shù)為的可能取值為,

可得,

所以隨機(jī)變量的分布列為:

1

2

3

所以期望為.

3)由表格中的數(shù)據(jù)可得,嘉賓的平均數(shù)為,

觀眾的平均得分為

所以,即嘉賓的平均分高于觀眾的平均分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿(mǎn)足:對(duì)任意的,若,則,且,設(shè)集合,集合中元素最小值記為,集合中元素最大值記為

(1)對(duì)于數(shù)列:,寫(xiě)出集合;

(2)求證:不可能為18;

(3)求的最大值以及的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),點(diǎn)是函數(shù)圖象上不同的兩點(diǎn),則為坐標(biāo)原點(diǎn))的取值范圍是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=sin(wx+)(w>0,)的最小正周期是π,若將該函數(shù)的圖象向右平移個(gè)單位后得到的函數(shù)圖象關(guān)于直線(xiàn)x=對(duì)稱(chēng),則函數(shù)f(x)的解析式為(

A.f(x)=sin(2x+)B.f(x)=sin(2x-)

C.f(x)=sin(2x+)D.f(x)=sin(2x-)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲、乙兩種樹(shù)苗中各抽測(cè)了10株樹(shù)苗的高度,其莖葉圖如圖.根據(jù)莖葉圖,下列描述正確的是(

A.甲種樹(shù)苗的平均高度大于乙種樹(shù)苗的平均高度,且甲種樹(shù)苗比乙種樹(shù)苗長(zhǎng)得整齊

B.甲種樹(shù)苗的平均高度大于乙種樹(shù)苗的平均高度,但乙種樹(shù)苗比甲種樹(shù)苗長(zhǎng)得整齊

C.乙種樹(shù)苗的平均高度大于甲種樹(shù)苗的平均高度,且乙種樹(shù)苗比甲種樹(shù)苗長(zhǎng)得整齊

D.乙種樹(shù)苗的平均高度大于甲種樹(shù)苗的平均高度,但甲種樹(shù)苗比乙種樹(shù)苗長(zhǎng)得整齊

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國(guó)其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒(méi)有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從27日起舉全市之力入戶(hù)上門(mén)排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無(wú)法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類(lèi)”人員,強(qiáng)化網(wǎng)格化管理,不落一戶(hù)、不漏一人.在排查期間,一戶(hù)6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對(duì)其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測(cè),若出現(xiàn)陽(yáng)性,則該家庭為“感染高危戶(hù)”.設(shè)該家庭每個(gè)成員檢測(cè)呈陽(yáng)性的概率均為)且相互獨(dú)立,該家庭至少檢測(cè)了5個(gè)人才能確定為“感染高危戶(hù)”的概率為,當(dāng)時(shí),最大,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐中,側(cè)面底面,底面是平行四邊形,,,,中點(diǎn),點(diǎn)在線(xiàn)段上.

(Ⅰ)證明:;

(Ⅱ)若 ,求實(shí)數(shù)使直線(xiàn)與平面所成角和直線(xiàn)與平面所成角相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)圓的圓心為,直線(xiàn)過(guò)點(diǎn)且與軸不重合,交圓,兩點(diǎn),過(guò)點(diǎn)的平行線(xiàn)交于點(diǎn).

(1)求的值;

(2)設(shè)點(diǎn)的軌跡為曲線(xiàn),直線(xiàn)與曲線(xiàn)相交于,兩點(diǎn),與直線(xiàn)相交于點(diǎn),試問(wèn)在橢圓上是否存在一定點(diǎn),使得,,成等差數(shù)列(其中,分別指直線(xiàn),的斜率).若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計(jì)算圓的周長(zhǎng),面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個(gè)近似數(shù)值,這個(gè)結(jié)果是當(dāng)時(shí)世界上圓周率計(jì)算的最精確數(shù)據(jù).如圖,當(dāng)分割到圓內(nèi)接正六邊形時(shí),某同學(xué)利用計(jì)算機(jī)隨機(jī)模擬法向圓內(nèi)隨機(jī)投擲點(diǎn),計(jì)算得出該點(diǎn)落在正六邊形內(nèi)的頻率為0.8269,那么通過(guò)該實(shí)驗(yàn)計(jì)算出來(lái)的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

同步練習(xí)冊(cè)答案