【題目】已知函數(shù),點(diǎn)是函數(shù)圖象上不同的兩點(diǎn),則為坐標(biāo)原點(diǎn))的取值范圍是( )
A. B.
C. D.
【答案】A
【解析】
根據(jù)分段函數(shù)的表達(dá)式,分別求出對(duì)應(yīng)切線(xiàn)和雙曲線(xiàn)漸近線(xiàn)的傾斜角,結(jié)合位置關(guān)系判斷∠AOB的大小即可.
當(dāng)x<0時(shí),y=,則y2=1+x2,當(dāng)時(shí),,作出函數(shù)圖象:
當(dāng)x<0時(shí),y=,則y2=1+x2,
即,為雙曲線(xiàn)在第二象限的一部分,
雙曲線(xiàn)的漸近線(xiàn)方程為,
若B在雙曲線(xiàn)上,則∠BOy的范圍是0<∠BOy<,
設(shè)當(dāng)x≥0時(shí),過(guò)原點(diǎn)的切線(xiàn)與f(x)=x2+1,相切,
設(shè)切點(diǎn)為,
則f′(x)=x,即切線(xiàn)斜率k=a,
則切線(xiàn)方程為,
∵切線(xiàn)過(guò)原點(diǎn),
∴,
即,
得=1,即=,則=,
則切線(xiàn)斜率,即切線(xiàn)傾斜角為,
則∠AOy的最大值為,
即0≤∠AOy≤,
則0<∠AOy+∠BOy<,
即0<∠AOB<,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的參數(shù)方程為(為參數(shù)),直線(xiàn)經(jīng)過(guò)點(diǎn)且傾斜角為.
(1)求曲線(xiàn)的極坐標(biāo)方程和直線(xiàn)的參數(shù)方程;
(2)已知直線(xiàn)與曲線(xiàn)交于,滿(mǎn)足為的中點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
求函數(shù)在處的切線(xiàn)方程;
若在,處導(dǎo)數(shù)相等,證明:.
若對(duì)于任意,直線(xiàn)與函數(shù)圖象都有唯一公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求證:函數(shù)是偶函數(shù);
(2)設(shè),求關(guān)于的函數(shù)在時(shí)的值域的表達(dá)式;
(3)若關(guān)于的不等式在時(shí)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為多面體,平面與平面垂直,點(diǎn)在線(xiàn)段上, 都是正三角形.
(1)證明:直線(xiàn)∥面;
(2)在線(xiàn)段上是否存在一點(diǎn),使得二面角的余弦值是,若不存在請(qǐng)說(shuō)明理由,若存在請(qǐng)求出點(diǎn)所在的位置。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】全國(guó)大學(xué)生機(jī)器人大賽是由共青團(tuán)中央,全國(guó)學(xué)聯(lián),深圳市人民政府聯(lián)合主辦的賽事,是中國(guó)最具影響力的機(jī)器人項(xiàng)目,是全球獨(dú)創(chuàng)的機(jī)器人競(jìng)技平臺(tái).全國(guó)大學(xué)生機(jī)器人大賽比拼的是參賽選手們的能力,堅(jiān)持和態(tài)度,展現(xiàn)的是個(gè)人實(shí)力以及整個(gè)團(tuán)隊(duì)的力量.2015賽季共吸引全國(guó)240余支機(jī)器人戰(zhàn)隊(duì)踴躍報(bào)名,這些參賽戰(zhàn)隊(duì)來(lái)自全國(guó)六大賽區(qū),150余所高等院校,其中不乏北京大學(xué),清華大學(xué),上海交大,中國(guó)科大,西安交大等眾多國(guó)內(nèi)頂尖高校,經(jīng)過(guò)嚴(yán)格篩選,最終由111支機(jī)器人戰(zhàn)隊(duì)參與到2015年全國(guó)大學(xué)生機(jī)器人大賽的激烈角逐之中,某大學(xué)共有“機(jī)器人”興趣團(tuán)隊(duì)1000個(gè),大一、大二、大三、大四分別有100,200,300,400個(gè),為挑選優(yōu)秀團(tuán)隊(duì),現(xiàn)用分層抽樣的方法,從以上團(tuán)隊(duì)中抽取20個(gè)團(tuán)隊(duì).
(1)應(yīng)從大三抽取多少個(gè)團(tuán)隊(duì)?
(2)將20個(gè)團(tuán)隊(duì)分為甲、乙兩組,每組10個(gè)團(tuán)隊(duì),進(jìn)行理論和實(shí)踐操作考試(共150分),甲、乙兩組的分?jǐn)?shù)如下:
甲:125,141,140,137,122,114,119,139,121,142
乙:127,116,144,127,144,116,140,140,116,140
從甲、乙兩組中選一組強(qiáng)化訓(xùn)練,備戰(zhàn)機(jī)器人大賽.
(i)從統(tǒng)計(jì)學(xué)數(shù)據(jù)看,若選擇甲組,理由是什么?若選擇乙組,理由是什么?
(ii)從乙組中不低于140分的團(tuán)隊(duì)中任取兩個(gè)團(tuán)隊(duì),求至少有一個(gè)團(tuán)隊(duì)為144分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形中,,,,為的中點(diǎn),沿將折起,使得點(diǎn)到點(diǎn)位置,且,為的中點(diǎn),是上的動(dòng)點(diǎn)(與點(diǎn),不重合).
(Ⅰ)證明:平面平面垂直;
(Ⅱ)是否存在點(diǎn),使得二面角的余弦值?若存在,確定點(diǎn)位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某歌手大賽進(jìn)行電視直播,比賽現(xiàn)場(chǎng)有6名特約嘉賓給每位參賽選手評(píng)分,場(chǎng)內(nèi)外的觀眾可以通過(guò)網(wǎng)絡(luò)平臺(tái)給每位參賽選手評(píng)分.某選手參加比賽后,現(xiàn)場(chǎng)嘉賓評(píng)分情況如下表;場(chǎng)內(nèi)外共有數(shù)萬(wàn)名觀眾參與了評(píng)分,組織方將觀眾評(píng)分按照,,分組,繪成頻率分布直方圖如下:
嘉賓 | ||||||
評(píng)分 | 96 | 95 | 96 | 89 | 97 | 98 |
(1)從觀眾中任取三人,求這三人中恰有1人分?jǐn)?shù)在另2人分?jǐn)?shù)在的概率;
(2)從嘉賓中隨機(jī)選3人,記3人中分?jǐn)?shù)不低于96分的人數(shù)為,求的期望;
(3)嘉賓評(píng)分的平均數(shù)為,場(chǎng)內(nèi)外的觀眾評(píng)分的平均數(shù)為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】維生素C又叫抗壞血酸,是一種水溶性維生素,是高等靈長(zhǎng)類(lèi)動(dòng)物與其他少數(shù)生物的必需營(yíng)養(yǎng)素.維生素C雖不直接構(gòu)成腦組織,也不向腦提供活動(dòng)能源,但維生素C有多種健腦強(qiáng)身的功效,它是腦功能極為重要的營(yíng)養(yǎng)物.維生素C的毒性很小,但食用過(guò)多仍可產(chǎn)生一些不良反應(yīng).根據(jù)食物中維C的含量可大致分為:含量很豐富:鮮棗、沙棘、獼猴桃、柚子,每100克中的維生素C含量超過(guò)100毫克;比較豐富:青椒、桂圓、番茄、草莓、甘藍(lán)、黃瓜、柑橘、菜花,每100克中維生素C含量超過(guò)50毫克;相對(duì)豐富:白菜、油菜、香菜、菠菜、芹菜、莧菜、菜苔、豌豆、豇豆、蘿卜,每100克中維生素C含量超過(guò)30~50毫克.現(xiàn)從獼猴桃、柚子兩種食物中測(cè)得每100克所含維生素C的量(單位:)得到莖葉圖如圖所示,則下列說(shuō)法中不正確的是( )
A.獼猴桃的平均數(shù)小于柚子的平均數(shù)
B.獼猴桃的方差小于柚子的方差
C.獼猴桃的極差為32
D.柚子的中位數(shù)為121
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com