9.袋中有8只球,編號分別為1,2,3,4,5,6,7,8,現(xiàn)從中任取3只球,以ξ表示取出的3只球中最大號碼與最小號碼的差,則E(ξ)=(  )
A.4B.4.5C.5D.5.5

分析 由題意知ξ的可能取值為2,3,4,5,6,7,分別求出相應的概率,由此能求出E(ξ).

解答 解:由題意知ξ的可能取值為2,3,4,5,6,7,
P(ξ=2)=$\frac{{C}_{6}^{1}}{{C}_{8}^{3}}$=$\frac{6}{56}$,
P(ξ=3)=$\frac{{C}_{5}^{1}({C}_{2}^{2}{C}_{2}^{1})}{{C}_{8}^{3}}$=$\frac{10}{56}$,
P(ξ=4)=$\frac{{C}_{4}^{1}({C}_{2}^{2}{C}_{3}^{1})}{{C}_{8}^{3}}$=$\frac{12}{56}$,
P(ξ=5)=$\frac{{C}_{3}^{1}({C}_{2}^{2}{C}_{4}^{1})}{{C}_{8}^{3}}$=$\frac{12}{56}$,
P(ξ=6)=$\frac{{C}_{2}^{1}({C}_{2}^{2}{C}_{5}^{1})}{{C}_{8}^{3}}$=$\frac{10}{56}$,
P(ξ=7)=$\frac{{C}_{2}^{2}{C}_{6}^{1}}{{C}_{8}^{3}}$=$\frac{6}{56}$,
∴E(ξ)=$2×\frac{6}{56}+3×\frac{10}{56}+4×\frac{12}{56}+5×\frac{12}{56}+6×\frac{10}{56}+7×\frac{6}{56}$=4.5.
故選:B.

點評 本題考查離散型隨機變量的數(shù)學期望的求法,是中檔題,解題時要認真審題,注意排列組合知識的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知f(x)是定義在R上的奇函數(shù),且當x≥0時,f(x)=-2x+x+m,則f(-2)=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.“一條直線l與平面α內無數(shù)條直線異面”是“這條直線與平面α平行”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)$y={log_a}({2{x^2}-3x+1})$,當x=3時,y<0則該函數(shù)的單調遞減區(qū)間是(  )
A.$({-∞,\frac{3}{4}})$B.$({\frac{3}{4},+∞})$C.$({-∞,\frac{1}{2}})$D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,在四棱錐中P-ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.
(1)求證:AD⊥PB;
(2)已知點M是線段PC上,MC=λPM,且PA∥平面MQB,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某青年教師有一專項課題是進行“學生數(shù)學成績與物理成績的關系”的研究,他調查了某中學高二年級800名學生上學期期末考試的數(shù)學和物理成績,把成績按優(yōu)秀和不優(yōu)秀分類得到的結果是:數(shù)學和物理都優(yōu)秀的有60人,數(shù)學成績優(yōu)秀但物理不優(yōu)秀的有140人,物理成績優(yōu)秀但數(shù)學不優(yōu)秀的有60人.
(1)能否在犯錯概率不超過0.001的前提下認為該中學學生的數(shù)學成績與物理成績有關?
(2)將上述調查所得到的頻率視為概率,從全體高二年級學生成績中,有放回地隨機抽取4名學生的成績,記抽取的4份成績中數(shù)學、物理兩科成績恰有一科優(yōu)秀的份數(shù)為X,求X的分布列和期望E(X).
附:
P(K2≥k00.1000.0500.010
k06.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.直線$x-\sqrt{3}y-2=0$的傾斜角為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.某校擬從高一年級、高二年級、高三年級學生中抽取一定比例的學生調查對“荊馬”(荊門國際馬拉松)的了解情況,則最合理的抽樣方法是(  )
A.抽簽法B.系統(tǒng)抽樣法C.分層抽樣法D.隨機數(shù)法

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若函數(shù)f(x)=x2-2|x|+m有兩個相異零點,則實數(shù)m的取值范圍是m=1或m<0.

查看答案和解析>>

同步練習冊答案