分析 (1)連結(jié)BD,則△ABD為正三角形,從而AD⊥BQ,AD⊥PQ,進(jìn)而AD⊥平面PQB,由此能證明AD⊥PB.
(2)連結(jié)AC,交BQ于N,連結(jié)MN,由AQ∥BC,得$\frac{AN}{NC}=\frac{AQ}{BC}=\frac{1}{2}$,根據(jù)線面平行的性質(zhì)定理得MN∥PA,由此能求出實(shí)數(shù)λ的值.
解答 證明:(1)如圖,連結(jié)BD,由題意知四邊形ABCD為菱形,∠BAD=60°,
∴△ABD為正三角形,
又∵AQ=QD,∴Q為AD的中點(diǎn),∴AD⊥BQ,
∵△PAD是正三角形,Q為AD中點(diǎn),
∴AD⊥PQ,又BQ∩PQ=Q,∴AD⊥平面PQB,
又∵PB?平面PQB,∴AD⊥PB.
解:(2)連結(jié)AC,交BQ于N,連結(jié)MN,
∵AQ∥BC,∴$\frac{AN}{NC}=\frac{AQ}{BC}=\frac{1}{2}$,
∵PN∥平面MQB,PA?平面PAC,
平面MQB∩平面PAC=MN,
∴根據(jù)線面平行的性質(zhì)定理得MN∥PA,
∴$\frac{PM}{MC}=\frac{AN}{NC}$,
綜上,得$\frac{PM}{MC}=\frac{1}{2}$,∴MC=2PM,
∵M(jìn)C=λPM,∴實(shí)數(shù)λ的值為2.
點(diǎn)評(píng) 本題考查線線垂直的證明,考查實(shí)數(shù)值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (-∞,0) | C. | [1,+∞) | D. | [0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|0<x<2} | B. | {x|0<x<1} | C. | {x|0≤x<1} | D. | {x|-1<x<0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-4) | B. | [-4,-3] | C. | (-4,-3] | D. | [-3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 4.5 | C. | 5 | D. | 5.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com