14.在直角坐標(biāo)系xOy中,點(diǎn)P(x,y)滿(mǎn)足$\left\{\begin{array}{l}2x-y-1≥0\\ x+y-5≤0\\ x-2y+1≤0\end{array}$,向量$\overrightarrow a$=(1,-1),則$\overrightarrow a$•$\overrightarrow{OP}$的最大值是1.

分析 畫(huà)出滿(mǎn)足條件的平面區(qū)域,求出角點(diǎn)的坐標(biāo),令$\overrightarrow{OP}$=(x,y),得到$\overrightarrow a$•$\overrightarrow{OP}$=x-y,令x-y=z,問(wèn)題轉(zhuǎn)化為求z的最大值,結(jié)合圖象求出即可.

解答 解:畫(huà)出滿(mǎn)足條件的平面區(qū)域,如圖示:
,
由$\left\{\begin{array}{l}{x+y-5=0}\\{x-2y+1=0}\end{array}\right.$,解得A(3,2),
令$\overrightarrow{OP}$=(x,y),
則$\overrightarrow a$•$\overrightarrow{OP}$=x-y,
令x-y=z,則y=x-z,
結(jié)合圖象得直線(xiàn)y=x-z過(guò)A(3,2)時(shí),z最大,
z的最大值是z=3-2=1,
故答案為:1.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單的線(xiàn)性規(guī)劃問(wèn)題,考查數(shù)形結(jié)合思想以及向量問(wèn)題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在正方體ABCD-A1B1C1D1中,E、F分別是BC、CC1的中點(diǎn),求證:面A1B1F⊥面C1DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若函數(shù)f(x)=x(lnx-ax)在區(qū)間(0,e)上有兩個(gè)不同的極值點(diǎn),則實(shí)數(shù)a的取值范圍是( 。 (e是自然對(duì)數(shù)的底數(shù))
A.$(\frac{1}{2e},\frac{1}{2})$B.$(0,\frac{1}{2})$C.$(\frac{1}{2e},+∞)$D.$(\frac{1}{e},\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an}的各項(xiàng)都大于1,且a1=2,a${\;}_{n+1}^{2}$-an+1-a${\;}_{n}^{2}$+1=0(n∈N*).
(1)求證:$\frac{n+7}{4}$≤an<an+1≤n+2;
(2)求證:$\frac{1}{2{a}_{1}^{2}-3}$+$\frac{1}{2{a}_{2}^{2}-3}$+$\frac{1}{2{a}_{3}^{2}-3}$+…+$\frac{1}{2{a}_{n}^{3}-3}$<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)公差不為零的等差數(shù)列{an}的前5項(xiàng)的和為55,且a2,$\sqrt{{a_6}+{a_7}},{a_4}$-9成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)數(shù)列bn=$\frac{1}{{({a_n}-6)({a_n}-4)}}$,求證:數(shù)列{bn}的前n項(xiàng)和Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若函數(shù)f(x)=2x+b-1(b∈R)的圖象不經(jīng)過(guò)第二象限,則有(  )
A.b≥1B.b≤1C.b≥0D.b≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖是甲、乙兩位同學(xué)在5次數(shù)學(xué)測(cè)試中得分的莖葉圖,則成績(jī)較穩(wěn)定(方差較。┑哪且晃煌瑢W(xué)的方差為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.$\frac{7}{16}$-$\frac{7}{8}$sin215°的值為(  )
A.$\frac{7}{32}$B.$\frac{7\sqrt{3}}{32}$C.$\frac{7}{16}$D.$\frac{7\sqrt{3}}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{3}}{2}$,直線(xiàn)l:y=x+2$\sqrt{5}$與橢圓相切.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)原點(diǎn)O作直線(xiàn)分別交橢圓C于M、N兩點(diǎn),過(guò)原點(diǎn)O作OP⊥MN,交橢圓于P,求△PMN面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案