【題目】已知產(chǎn)品的質(zhì)量采用綜合指標(biāo)值
進(jìn)行衡量,
為一等品;
為二等品;
為三等品.我市一家工廠準(zhǔn)備購進(jìn)新型設(shè)備以提高生產(chǎn)產(chǎn)品
的效益,在某供應(yīng)商提供的設(shè)備中任選一個試用,生產(chǎn)了一批產(chǎn)品并統(tǒng)計相關(guān)數(shù)據(jù),得到頻率分布直方圖:
(1)估計該新型設(shè)備生產(chǎn)的產(chǎn)品為二等品的概率;
(2)根據(jù)這家工廠的記錄,產(chǎn)品各等次的銷售率(某等次產(chǎn)品銷量與其對應(yīng)產(chǎn)量的比值)及單件售價情況如下:
一等品 | 二等品 | 三等品 | |
銷售率 | |||
單件售價 |
|
|
|
根據(jù)以往的銷售方案,未售出的產(chǎn)品統(tǒng)一按原售價的全部處理完.已知該工廠認(rèn)購該新型設(shè)備的前提條件是,該新型設(shè)備生產(chǎn)的產(chǎn)品同時滿足下列兩個條件:
①綜合指標(biāo)值的平均數(shù)不小于(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
②單件平均利潤值不低于.
若該新型設(shè)備生產(chǎn)的產(chǎn)品的成本為
元/件,月產(chǎn)量為
件,在銷售方案不變的情況下,根據(jù)以上圖表數(shù)據(jù),分析該新型設(shè)備是否達(dá)到該工廠的認(rèn)購條件.
【答案】(1) 事件的概率估計值為
;(2)見解析.
【解析】分析:(1)根據(jù)頻率分布直方圖中的頻率計算即可.(2)根據(jù)頻率分布直方圖求出綜合指標(biāo)值的平均數(shù),然后再根據(jù)題意求出單件平均利潤值,根據(jù)題意進(jìn)行判斷可得結(jié)論.
詳解:(1)記為事件“該新型設(shè)備生產(chǎn)的產(chǎn)品
為二等品”.
由直方圖可知,該新型設(shè)備生產(chǎn)的產(chǎn)品為二等品的頻率為:
,
故事件的概率估計值為
.
(2)①先分析該新型設(shè)備生產(chǎn)的產(chǎn)品的綜合指標(biāo)值的平均數(shù):
由直方圖可知綜合指標(biāo)值的平均數(shù)
.
所以該設(shè)備生產(chǎn)出的產(chǎn)品的綜合指標(biāo)值的平均數(shù)的估計值
,
故滿足認(rèn)購條件①.
②再分析該窯爐燒制的單件平均利潤值:
由直方圖可知該設(shè)備生產(chǎn)出的產(chǎn)品為一、二、三等品的概率估計值分別為:
,
,
.
故件產(chǎn)品中,一、二、三等品的件數(shù)估計值分別為:
件,
件,
件.
一等品的銷售總利潤為元;
二等品的銷售總利潤為元;
三等品的銷售總利潤為元.
故件產(chǎn)品的單件平均利潤值的估計值為:
元.
滿足認(rèn)購條件②.
綜上所述,該新型設(shè)備達(dá)到認(rèn)購條件.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程為 (α為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),Ox軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程
(2)若直線l的極坐標(biāo)方程為ρ(sinθ+cosθ)=1,求直線l被曲線C截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬元)對年銷售量
(單位:噸)的影響,對近六年的年宣傳費(fèi)
和年銷售量
(
)的數(shù)據(jù)作了初步統(tǒng)計,得到如下數(shù)據(jù):
年份( | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年宣傳費(fèi) | 23 | 25 | 27 | 29 | 32 | 35 |
年銷售量 | 11 | 21 | 24 | 66 | 115 | 325 |
(1)根據(jù)散點(diǎn)圖判斷與
,哪一個更適合作為年銷售量
(噸)與關(guān)于宣傳費(fèi)
(萬元)的回歸方程類型;
(2)規(guī)定當(dāng)產(chǎn)品的年銷售量(噸)與年宣傳費(fèi)
(萬元)的比值大于1時,認(rèn)為該年效益良好,現(xiàn)從這6年中任選3年,記其中選到效益良好的數(shù)量為
,試求
的所有取值情況及對應(yīng)的概率;
(3)根據(jù)頻率分布直方圖中求出樣本數(shù)據(jù)平均數(shù)的思想方法,求的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:
過圓上任意一點(diǎn)
向
軸引垂線垂足為
(點(diǎn)
、
可重合),點(diǎn)
為
的中點(diǎn).
(1)求的軌跡方程;
(2)若點(diǎn)的軌跡方程為曲線
,不過原點(diǎn)
的直線
與曲線
交于
、
兩點(diǎn),滿足直線
,
,
的斜率依次成等比數(shù)列,求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sinxcosx+sin2x+
(x∈R).
(Ⅰ)當(dāng)x∈[﹣ ,
]時,求f(x)的最大值.
(Ⅱ)設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且c= ,f(C)=2,sinB=2sinA,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過
三點(diǎn).
(1)求橢圓的方程;
(2)在直線上任取一點(diǎn)
,連接
,分別與橢圓
交于
兩點(diǎn),判斷直線
是否過定點(diǎn)?若是,求出該定點(diǎn).若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,
,角
,
,
為
的內(nèi)角,其所對的邊分別為
,
,
.
(1)當(dāng)取得最大值時,求角
的大小;
(2)在(1)成立的條件下,當(dāng)時,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與圓
且與橢圓
相交于
兩點(diǎn).
(1)若直線恰好經(jīng)過橢圓的左頂點(diǎn),求弦長
(2)設(shè)直線的斜率分別為
,判斷
是否為定值,并說明理由
(3)求,面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P—ABCD中,ABCD為矩形,△PAD為等腰直角三角形,
∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分別為PC和BD的中點(diǎn).
(1)證明:EF∥面PAD;
(2)證明:面PDC⊥面PAD;
(3)求四棱錐P—ABCD的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com