【題目】已知產(chǎn)品的質(zhì)量采用綜合指標(biāo)值進(jìn)行衡量,為一等品;為二等品;為三等品.我市一家工廠準(zhǔn)備購進(jìn)新型設(shè)備以提高生產(chǎn)產(chǎn)品的效益,在某供應(yīng)商提供的設(shè)備中任選一個(gè)試用,生產(chǎn)了一批產(chǎn)品并統(tǒng)計(jì)相關(guān)數(shù)據(jù),得到頻率分布直方圖:
(1)估計(jì)該新型設(shè)備生產(chǎn)的產(chǎn)品為二等品的概率;
(2)根據(jù)這家工廠的記錄,產(chǎn)品各等次的銷售率(某等次產(chǎn)品銷量與其對(duì)應(yīng)產(chǎn)量的比值)及單件售價(jià)情況如下:
一等品 | 二等品 | 三等品 | |
銷售率 | |||
單件售價(jià) | 元 | 元 | 元 |
根據(jù)以往的銷售方案,未售出的產(chǎn)品統(tǒng)一按原售價(jià)的全部處理完.已知該工廠認(rèn)購該新型設(shè)備的前提條件是,該新型設(shè)備生產(chǎn)的產(chǎn)品同時(shí)滿足下列兩個(gè)條件:
①綜合指標(biāo)值的平均數(shù)不小于(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
②單件平均利潤(rùn)值不低于.
若該新型設(shè)備生產(chǎn)的產(chǎn)品的成本為元/件,月產(chǎn)量為件,在銷售方案不變的情況下,根據(jù)以上圖表數(shù)據(jù),分析該新型設(shè)備是否達(dá)到該工廠的認(rèn)購條件.
【答案】(1) 事件的概率估計(jì)值為;(2)見解析.
【解析】分析:(1)根據(jù)頻率分布直方圖中的頻率計(jì)算即可.(2)根據(jù)頻率分布直方圖求出綜合指標(biāo)值的平均數(shù),然后再根據(jù)題意求出單件平均利潤(rùn)值,根據(jù)題意進(jìn)行判斷可得結(jié)論.
詳解:(1)記為事件“該新型設(shè)備生產(chǎn)的產(chǎn)品為二等品”.
由直方圖可知,該新型設(shè)備生產(chǎn)的產(chǎn)品為二等品的頻率為:
,
故事件的概率估計(jì)值為.
(2)①先分析該新型設(shè)備生產(chǎn)的產(chǎn)品的綜合指標(biāo)值的平均數(shù):
由直方圖可知綜合指標(biāo)值的平均數(shù)
.
所以該設(shè)備生產(chǎn)出的產(chǎn)品的綜合指標(biāo)值的平均數(shù)的估計(jì)值,
故滿足認(rèn)購條件①.
②再分析該窯爐燒制的單件平均利潤(rùn)值:
由直方圖可知該設(shè)備生產(chǎn)出的產(chǎn)品為一、二、三等品的概率估計(jì)值分別為:,,.
故件產(chǎn)品中,一、二、三等品的件數(shù)估計(jì)值分別為:件,件,件.
一等品的銷售總利潤(rùn)為元;
二等品的銷售總利潤(rùn)為元;
三等品的銷售總利潤(rùn)為元.
故件產(chǎn)品的單件平均利潤(rùn)值的估計(jì)值為:
元.
滿足認(rèn)購條件②.
綜上所述,該新型設(shè)備達(dá)到認(rèn)購條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程為 (α為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),Ox軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程
(2)若直線l的極坐標(biāo)方程為ρ(sinθ+cosθ)=1,求直線l被曲線C截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬元)對(duì)年銷售量(單位:噸)的影響,對(duì)近六年的年宣傳費(fèi)和年銷售量()的數(shù)據(jù)作了初步統(tǒng)計(jì),得到如下數(shù)據(jù):
年份() | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年宣傳費(fèi)(萬元) | 23 | 25 | 27 | 29 | 32 | 35 |
年銷售量(噸) | 11 | 21 | 24 | 66 | 115 | 325 |
(1)根據(jù)散點(diǎn)圖判斷與,哪一個(gè)更適合作為年銷售量(噸)與關(guān)于宣傳費(fèi)(萬元)的回歸方程類型;
(2)規(guī)定當(dāng)產(chǎn)品的年銷售量(噸)與年宣傳費(fèi)(萬元)的比值大于1時(shí),認(rèn)為該年效益良好,現(xiàn)從這6年中任選3年,記其中選到效益良好的數(shù)量為,試求的所有取值情況及對(duì)應(yīng)的概率;
(3)根據(jù)頻率分布直方圖中求出樣本數(shù)據(jù)平均數(shù)的思想方法,求的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: 過圓上任意一點(diǎn)向軸引垂線垂足為(點(diǎn)、可重合),點(diǎn)為的中點(diǎn).
(1)求的軌跡方程;
(2)若點(diǎn)的軌跡方程為曲線,不過原點(diǎn)的直線與曲線交于、兩點(diǎn),滿足直線, , 的斜率依次成等比數(shù)列,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sinxcosx+sin2x+ (x∈R).
(Ⅰ)當(dāng)x∈[﹣ , ]時(shí),求f(x)的最大值.
(Ⅱ)設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且c= ,f(C)=2,sinB=2sinA,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過三點(diǎn).
(1)求橢圓的方程;
(2)在直線上任取一點(diǎn),連接,分別與橢圓交于兩點(diǎn),判斷直線是否過定點(diǎn)?若是,求出該定點(diǎn).若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,,角,,為的內(nèi)角,其所對(duì)的邊分別為,,.
(1)當(dāng)取得最大值時(shí),求角的大;
(2)在(1)成立的條件下,當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與圓 且與橢圓相交于兩點(diǎn).
(1)若直線恰好經(jīng)過橢圓的左頂點(diǎn),求弦長(zhǎng)
(2)設(shè)直線的斜率分別為,判斷是否為定值,并說明理由
(3)求,面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P—ABCD中,ABCD為矩形,△PAD為等腰直角三角形,
∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分別為PC和BD的中點(diǎn).
(1)證明:EF∥面PAD;
(2)證明:面PDC⊥面PAD;
(3)求四棱錐P—ABCD的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com