【題目】已知函數(shù)f(x)= sinxcosx+sin2x+ (x∈R).
(Ⅰ)當(dāng)x∈[﹣ , ]時(shí),求f(x)的最大值.
(Ⅱ)設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且c= ,f(C)=2,sinB=2sinA,求a.
【答案】解:(Ⅰ)函數(shù)f(x)= sinxcosx+sin2x+
= sin2x+ +
= sin2x﹣ cos2x+1
=sin(2x﹣ )+1(x∈R),
當(dāng)x∈[﹣ , ]時(shí),2x﹣ ∈[﹣ , ],
令2x﹣ = ,解得x= ,
此時(shí)sin(2x﹣ )=1,
f(x)取得最大值f(x)max=2;
(Ⅱ)∵f(C)=sin(2C﹣ )+1=2,
∴ ,
∵0<C<π,∴ ,
令 ,
解得 ;
又∵sinB=2sinA,
∴ ,
∴b=2a;由余弦定理得:c2=a2+b2﹣2abcos =3,
幾a2+b2﹣ab=3,
整理得5a2﹣2a﹣3=0,
解得a=1或a=﹣ (不合題意,舍去),
∴a的值是1.
【解析】(Ⅰ)化簡函數(shù)f(x)為正弦型函數(shù),根據(jù)x∈[﹣ , ],求出2x﹣ 的范圍,從而求出f(x)的最大值;(Ⅱ)根據(jù)f(C)=2求出C的值,再由正弦、余弦定理,即可求出a的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖所示.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為[220,240),[240,260),[260,280),[280,300]的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班同學(xué)利用春節(jié)進(jìn)行社會(huì)實(shí)踐,對本地歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,將生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖。
(一)人數(shù)統(tǒng)計(jì)表: (二)各年齡段人數(shù)頻率分布直方圖:
(Ⅰ)在答題卡給定的坐標(biāo)系中補(bǔ)全頻率分布直方圖,并求出、、的值;
(Ⅱ)從歲年齡段的“低碳族”中采用分層抽樣法抽取人參加戶外低碳體驗(yàn)活動(dòng)。若將這個(gè)人通過抽簽分成甲、乙兩組,每組的人數(shù)相同,求歲中被抽取的人恰好又分在同一組的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l1經(jīng)過點(diǎn)A(m,1),B(-3,4),直線l2經(jīng)過點(diǎn)C(1,m),D(-1,m+1),當(dāng)l1∥l2或l1⊥l2時(shí),分別求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知產(chǎn)品的質(zhì)量采用綜合指標(biāo)值進(jìn)行衡量,為一等品;為二等品;為三等品.我市一家工廠準(zhǔn)備購進(jìn)新型設(shè)備以提高生產(chǎn)產(chǎn)品的效益,在某供應(yīng)商提供的設(shè)備中任選一個(gè)試用,生產(chǎn)了一批產(chǎn)品并統(tǒng)計(jì)相關(guān)數(shù)據(jù),得到頻率分布直方圖:
(1)估計(jì)該新型設(shè)備生產(chǎn)的產(chǎn)品為二等品的概率;
(2)根據(jù)這家工廠的記錄,產(chǎn)品各等次的銷售率(某等次產(chǎn)品銷量與其對應(yīng)產(chǎn)量的比值)及單件售價(jià)情況如下:
一等品 | 二等品 | 三等品 | |
銷售率 | |||
單件售價(jià) | 元 | 元 | 元 |
根據(jù)以往的銷售方案,未售出的產(chǎn)品統(tǒng)一按原售價(jià)的全部處理完.已知該工廠認(rèn)購該新型設(shè)備的前提條件是,該新型設(shè)備生產(chǎn)的產(chǎn)品同時(shí)滿足下列兩個(gè)條件:
①綜合指標(biāo)值的平均數(shù)不小于(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
②單件平均利潤值不低于.
若該新型設(shè)備生產(chǎn)的產(chǎn)品的成本為元/件,月產(chǎn)量為件,在銷售方案不變的情況下,根據(jù)以上圖表數(shù)據(jù),分析該新型設(shè)備是否達(dá)到該工廠的認(rèn)購條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線過點(diǎn)P且與x軸、y軸的正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),是否存在這樣的直線滿足下列條件:①△AOB的周長為12;②△AOB的面積為6.若存在,求出方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①存在實(shí)數(shù)x,使 ;
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數(shù)y=sin2x的圖象向左平移 個(gè)單位,得到函數(shù) 的圖象;
④定義在R上的奇函數(shù)f(x)滿足f(x+2)=f(﹣x),當(dāng)0≤x≤1時(shí),f(x)=2x,
則f(2015)=﹣2.
其中正確命題是(寫出所有正確命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sinωx+cosωx(ω>0)的圖象與直線y=﹣2的兩個(gè)相鄰公共點(diǎn)之間的距離等于π,則f(x)的單調(diào)遞減區(qū)間是( )
A.[kπ+ ,kπ+ ],k∈z
B.[kπ﹣ ,kπ+ ],k∈z
C.[2kπ+ ,2kπ+ ],k∈z
D.[2kπ﹣ ,2kπ+ ],k∈z
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com