12.已知函數(shù)f(x)=x4-$\frac{1}{3}$mx3+$\frac{1}{2}$x2+1在(0,1)上是單調(diào)遞增函數(shù),則實(shí)數(shù)m的最大值為( 。
A.4B.5C.$\frac{29}{5}$D.6

分析 求出函數(shù)的對(duì)數(shù),問題轉(zhuǎn)化為m≤4x+$\frac{1}{x}$在(0,1)恒成立,根據(jù)不等式的性質(zhì)求出m的最大值即可.

解答 解:f(x)=x4-$\frac{1}{3}$mx3+$\frac{1}{2}$x2+1,f′(x)=4x3-mx2+x,
函數(shù)f(x)=x4-$\frac{1}{3}$mx3+$\frac{1}{2}$x2+1在(0,1)上是單調(diào)遞增函數(shù),
則f′(x)≥0在(0,1)恒成立,即m≤4x+$\frac{1}{x}$在(0,1)恒成立,
而4x+$\frac{1}{x}$≥2$\sqrt{4x•\frac{1}{x}}$=4,當(dāng)且僅當(dāng)x=$\frac{1}{2}$時(shí)“=”成立,
故m≤4,
故選:A.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.正四棱錐的頂點(diǎn)都在同一球面上,若該棱錐的高為4,底面邊長(zhǎng)為2,則該球的表面積是( 。
A.16πB.$\frac{81π}{4}$C.D.$\frac{27π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知$\overrightarrow a$=($\sqrt{3}$,$\sqrt{5}$),$\overrightarrow b$⊥$\overrightarrow a$,且|$\overrightarrow b$|=2,則向量$\overrightarrow b$的坐標(biāo)為(-$\frac{\sqrt{10}}{2}$,$\frac{\sqrt{6}}{2}$)或($\frac{\sqrt{10}}{2}$,-$\frac{\sqrt{6}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=ln(1-x)+ax2+x
(1)當(dāng)a=$\frac{1}{2}$時(shí),試判斷f(x)的單調(diào)性.
(2)當(dāng)a>0時(shí),?x∈(0,1),f(x)<0成立,求a的取值范圍.
(3)求證:ln(1+n)-(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$)>1-$\frac{1}{2n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.等比數(shù)列{an}中,a1=1,a8=4,函數(shù)f(x)=x(x-a1)(x-a2)…(x-an),則f′(0)( 。
A.0B.16C.64D.256

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知兩點(diǎn)F1(-1,0)及F2(1,0),點(diǎn)P在以F1、F2為焦點(diǎn)的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.
(I)求橢圓C的方程;
(Ⅱ)設(shè)經(jīng)過F2的直線m與曲線C交于P、Q兩點(diǎn),若|PQ|2=|F1P|2+|F1Q|2,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在(1+x)3+(1+x)4+…+(1+x)19的展開式中,含x2項(xiàng)的系數(shù)是1139.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=mx2-mx-1.若對(duì)一切實(shí)數(shù)x,f(x)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ax-lnx,a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;   
( 2)當(dāng)x∈(0,e]時(shí),求g(x)=e2x-lnx的最小值;
(3)當(dāng)x∈(0,e]時(shí),證明:e2x-lnx-$\frac{lnx}{x}$>$\frac{5}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案