A. | 16π | B. | $\frac{81π}{4}$ | C. | 9π | D. | $\frac{27π}{4}$ |
分析 正四棱錐P-ABCD的外接球的球心在它的高PE上,求出球的半徑,求出球的表面積.
解答 解:如圖,正四棱錐P-ABCD中,PE為正四棱錐的高,根據(jù)球的相關知識可知,正四棱錐的外接球的球心O必在正四棱錐的高線PE所在的直線上,延長PE交球面于一點F,連接AE,AF,由球的性質(zhì)可知△PAF為直角三角形且AE⊥PF,
根據(jù)平面幾何中的射影定理可得PA2=PF•PE,
因為AE=$\frac{\sqrt{A{B}^{2}+B{C}^{2}}}{2}$=$\sqrt{2}$,
所以側(cè)棱長PA=$\sqrt{P{E}^{2}+A{E}^{2}}$=3$\sqrt{2}$,PF=2R,
所以18=2R×4,所以R=$\frac{9}{4}$,
所以S=4πR2=$\frac{81π}{4}$
故選B.
點評 本題考查球的表面積,球的內(nèi)接幾何體問題,考查計算能力,是基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{11π}{12}$,0)∈A | B. | (-$\frac{7π}{12}$,1)∉A | ||
C. | {(-$\frac{7π}{12}$,1),($\frac{17π}{12}$,1)}⊆A | D. | {($\frac{π}{2}$,1),($\frac{17π}{12}$,1)}⊆A |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | $\frac{29}{5}$ | D. | 6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com