【題目】已知函數(shù),若函數(shù)有四個零點,則的取值范圍是( )
A.B.C.D.
【答案】C
【解析】
由題意易知,時不滿足題意.當且時,為開口向上,對稱軸為的二次函數(shù),最多兩個零點,當且時,,當時單調(diào)遞增,當時單調(diào)遞減,最多兩個零點,若使得函數(shù)有四個零點,則需,求解即可.
當時,,函數(shù)無零點,舍去.
當且時,
為開口向下,對稱軸為的二次函數(shù),
,.
則時,函數(shù)與軸只有一個交點.
當且時,.
函數(shù)在上單調(diào)遞增,.
則時,函數(shù)與軸無交點.
則當時,函數(shù)有一個零點.與題意不符,舍去.
當且時.
為開口向上,對稱軸為的二次函數(shù).
,.
函數(shù)在最多有兩個零點
當且時.
.
當時單調(diào)遞增,當時單調(diào)遞減,
函數(shù)在最多有兩個零點
若使得函數(shù)有四個零點,則需.
即,解得.
故選:C
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足,.
(1)若為遞增數(shù)列,且成等差數(shù)列,求的值;
(2)若,且是遞增數(shù)列,是遞減數(shù)列,求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)A,B兩點的坐標分別為(﹣1,0),(1,0).條件甲:A、B、C三點構(gòu)成以∠C為鈍角的三角形;條件乙:點C的坐標是方程x2+2y2=1(y≠0)的解,則甲是乙的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】斜三棱柱ABC﹣A1B1C1,已知側(cè)面BB1C1C與底面ABC垂直且∠BCA=90°,∠B1BC=60°,BC=BB1=2,若二面角A﹣B1B﹣C為30°
(1)求AB1與平面BB1C1C所成角的正切值;
(2)在平面AA1B1B內(nèi)找一點P,使三棱錐P﹣BB1C為正三棱錐,并求P到平面BB1C距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某中學學生對《中華人民共和國交通安全法》的了解情況,調(diào)查部門在該校進行了一次問卷調(diào)查(共12道題),從該校學生中隨機抽取40人,統(tǒng)計了每人答對的題數(shù),將統(tǒng)計結(jié)果分成,,,,,六組,得到如下頻率分布直方圖.
(1)若答對一題得10分,未答對不得分,估計這40人的成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)若從答對題數(shù)在內(nèi)的學生中隨機抽取2人,求恰有1人答對題數(shù)在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,圓的普通方程為.在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為.
(1)寫出圓的參數(shù)方程和直線的直角坐標方程;
(2)設(shè)點在上,點Q在上,求的最小值及此時點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分13分)
已知函數(shù),(其中),其部分圖像如圖所示.
(I)求的解析式;
(II)求函數(shù)在區(qū)間上的最大值及相應(yīng)的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓C的方程為,O為坐標原點,A為橢團的上頂點,為其右焦點,D是線段的中點,且.
(1)求橢圓C的方程;
(2)過坐標原點且斜率為正數(shù)的直線交橢圓C于P,Q兩點,分別作軸,軸,垂足分別為E,F,連接,并延長交橢圓C于點M,N兩點.
(ⅰ)判斷的形狀;
(ⅱ)求四邊形面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com