已知雙曲線
x2
25
-
y2
16
=1左支上一點M到右焦點F的距離為16,N是線段MF的中點,O為坐標(biāo)原點,則|ON|的值是
 
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:先利用三角形的中位線的性質(zhì),可得ON=
1
2
MF1,再利用雙曲線的定義,求得|MF1|=6,即可求得|ON|.
解答: 解:由題意,連接MF1,則ON是△MF1F2的中位線,∴ON∥MF1,ON=
1
2
MF1,
∵左支上一點M到右焦點F2的距離為16,
∴由雙曲線的定義知,|MF2|-|MF1|=2×5,∴|MF1|=6.
∴|ON|=3,
故答案為:3.
點評:本題以雙曲線的標(biāo)準(zhǔn)方程為載體,考查雙曲線的定義,考查三角形中位線的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差d不為零,Sn為其前n項和,S6=5S3
(Ⅰ)求證:a2,a3,a5成等比數(shù)列;
(Ⅱ)若a2=2,且a2,a3,a5為等比數(shù)列{bn}的前三項,求數(shù)列|
Sn+1
bn
|的最大項的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,圓ρ=6cosθ+2
3
sinθ(ρ>0,0≤θ<2π),則圓心的極坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列四個命題:
①“若x+y=0,則x,y互為相反數(shù)”的逆命題;
②“全等三角形的面積相等”的否命題;
③“若q≤1,則方程x2+2x+q=0有實根”的逆否命題;
④“等邊三角形的三個內(nèi)角相等”的否命題.
⑤“若a>b,則ac2>bc2”的逆命題
其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一袋中裝有5個白球,3個紅球,現(xiàn)從袋中往外取球,每次取出一個,取出后記下球的顏色,然后放回,直到紅球出現(xiàn)2次停止,用X表示取球的次數(shù),則P(X=3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)RAND可以產(chǎn)生區(qū)間[0,1]上的均勻隨機數(shù),若a1=RAND,b1=RAND且x=10(a1-0.5),y=10b1,(x,y)為點M的坐標(biāo),則點M滿足x<y<x+5的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式ax-b>0解集為(1,+∞),則關(guān)于x的不等式(ax+b)(x-1)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)以下向量組①②③的坐標(biāo)計算并猜想向量
a
=(cos10°,sin10°)與
b
=(cos50°,sin50°)夾角為
 

a
=(cos30°,shi30°),
b
=(cos60°,sin60°)
a
=(cos75°,shi75°),
b
=(cos15°,sin15°)
a
=(cos45°,shi45°),
b
=(cos90°,sin90°)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖正方體ABCD-A1B1C1D1的棱長為2,線段B1D1上有兩個動點E、F,且EF=
1
2
,則下列結(jié)論中錯誤的是( 。
A、AC⊥BE
B、EF∥平面ABCD
C、三棱錐A-BEF的體積為定值
D、△AEF的面積與△BEF的面積相等

查看答案和解析>>

同步練習(xí)冊答案