【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖(1),(2),(3),(4)為最簡(jiǎn)單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.
(1)求出f(5)的值.
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式.
【答案】
(1)f(5)=41.
(2)因?yàn)閒(2)-f(1)=4=4×1,
f(3)-f(2)=8=4×2,
f(4)-f(3)=12=4×3,
f(5)-f(4)=16=4×4,
…
由上式規(guī)律,所以得出f(n+1)-f(n)=4n.
因?yàn)閒(n+1)-f(n)=4nf(n+1)=f(n)+4n
f(n)=f(n-1)+4(n-1)
=f(n-2)+4(n-1)+4(n-2)
=f(n-3)+4(n-1)+4(n-2)+4(n-3)
=…
=f(1)+4(n-1)+4(n-2)+4(n-3)+…+4
=2n2-2n+1.
【解析】找出第n+1項(xiàng)和第n項(xiàng)之間的關(guān)系,再利用數(shù)列中由遞推數(shù)列推導(dǎo)通項(xiàng)數(shù)列的方法求f(n)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知α,β∈( ,π),且sinα+cosα=a,cos(β﹣α)= .
(1)若a= ,求sinαcosα+tanα﹣ 的值;
(2)若a= ,求sinβ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某矩形花壇ABCD長(zhǎng)AB=3m,寬AD=2m,現(xiàn)將此花壇在原有基礎(chǔ)上有拓展成三角形區(qū)域,AB、AD分別延長(zhǎng)至E、F并使E、C、F三點(diǎn)共線.
(1)要使三角形AEF的面積大于16平方米,則AF的長(zhǎng)應(yīng)在什么范圍內(nèi)?
(2)當(dāng)AF的長(zhǎng)度是多少時(shí),三角形AEF的面積最?并求出最小面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】10.已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(diǎn)( ,an+1)(n∈N*)在函數(shù)y=x2+1的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)若數(shù)列{bn}滿足b1=1,bn+1=bn+ ,求證:bn·bn+2< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若函數(shù)有三個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過三點(diǎn).
(1)求橢圓的方程;
(2)在直線上任取一點(diǎn),連接,分別與橢圓交于兩點(diǎn),判斷直線是否過定點(diǎn)?若是,求出該定點(diǎn).若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù) ,則( )
A.最大值為1,最小值為
B.最大值為1,無最小值
C.最小值為 ,無最大值
D.既無最大值也無最小值查看解析
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,△ABE為等腰直角三角形,∠BAE=90°,且AD⊥AE.
(1)證明:平面AEC⊥平面BED.
(2)求直線EC與平面BED所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com