精英家教網 > 高中數學 > 題目詳情

已知數列中,為數列的前項和,且
(1)求數列的通項公式;
(2)設,求數列的前項的和;
(3)證明對一切,有

(1);(2);(3)證明過程詳見解析.

解析試題分析:本題主要考查數列的通項公式、遞推公式、裂項相消法、數學歸納法、錯位相減法等基礎知識,考查學生分析問題解決問題的能力,轉化能力和計算能力.第一問,用n-1代替中的n,得到一個等式,2個等式相減,得到,分n為奇數偶數進行討論,分別求出的通項公式,由于得到的式子相同,所以的通項公式就是;第二問,要求數列的前n項和,關鍵是需要求出的通項公式,可以利用已知的遞推公式進行推導,也可以利用數學歸納法猜想證明,得到的通項公式后,代入到中,得到的通項公式,最后用錯位相減法進行求和;第三問,先用放縮法對原式進行變形,再用裂項相消法求和,最后和作比較.
試題解析:(1)由已知,,,
由題意,即,當n為奇數時,;當n為偶數時,.
所以.4分
(2)解法一:由已知,對
兩邊同除以,得,即,
于是,==,
,,所以=
,,又時也成立,故.
所以,8分
解法二:也可以歸納、猜想得出,然后用數學歸納法證明.
(3)當,有,
所以時,有

=.
時,.故對一切,有.14分
考點:1.由;2.錯位相減法;3.數學歸納法;4.裂項相消法.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設數列的首項,前項和為,且,,成等差數列,其中.
(1)求數列的通項公式;
(2)數列滿足:,記數列的前項和為,求及數列的最大項.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

數列的首項,
求數列的通項公式;
的前項和為,若的最小值為,求的取值范圍?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

一個三角形數表按如下方式構成(如圖:其中項數):第一行是以4為首項,4為公差的等差數列,從第二行起,每一個數是其肩上兩個數的和,例如:為數表中第行的第個數.
(1)求第2行和第3行的通項公式;
(2)證明:數表中除最后2行外每一行的數都依次成等差數列;
(3)求關于)的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列{an}的前n項和Sn=2n2+2n,數列{bn}的前n項和Tn=2-bn.
(1)求數列{an}與{bn}的通項公式;
(2)設cn·bn,證明:當且僅當n≥3時,cn+1<cn..

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若正數項數列的前項和為,首項,點在曲線上.
(1)求,;
(2)求數列的通項公式;
(3)設,表示數列的前項和,若恒成立,求及實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的前項和為,
(1)求證:數列是等比數列;
(2)若,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

數列滿足.
(1)若是等差數列,求證:為等差數列;
(2)若,求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列滿足遞推式:
(Ⅰ)若,求的遞推關系(用表示);
(Ⅱ)求證:

查看答案和解析>>

同步練習冊答案