已知數(shù)列滿足遞推式:
(Ⅰ)若,求的遞推關(guān)系(用表示);
(Ⅱ)求證:

(Ⅰ);(Ⅱ)詳見解析.

解析試題分析:(Ⅰ)要得的遞推關(guān)系,首先找到的遞推關(guān)系.由,
代入的遞推關(guān)系便可得的遞推關(guān)系.
(Ⅱ)由(Ⅰ)可得:

數(shù)列中涉及前項(xiàng)和的不等式的證明,一般有兩個(gè)大的方向,一種是先求和,后放縮;一種是先放縮,后求和.在本題中顯然不可能先求和.所以選擇先放縮后求和的方法.本題中還是一個(gè)有絕對值符號(hào)的式子,所以還應(yīng)去掉絕對值符號(hào).在去絕對值符號(hào)時(shí),需要對分奇數(shù)與偶數(shù)討論:,注意這里的分母,一個(gè)是加1,一個(gè)是減1,這種情況下,不能單獨(dú)放縮,而是將兩項(xiàng)相加后再放縮.
,這樣再分是奇數(shù)和偶數(shù),就可使問題得證.
試題解析:(Ⅰ)…………………①
代入①式得,

(Ⅱ).
分奇數(shù)與偶數(shù)討論:,則
,則
;


綜上所述,原不等式成立.
考點(diǎn):1、遞推數(shù)列;2、不等式的證明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,,為數(shù)列的前項(xiàng)和,且
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)的和;
(3)證明對一切,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2013年我國汽車擁有量已超過2億(目前只有中國和美國超過2億),為了控制汽車尾氣對環(huán)境的污染,國家鼓勵(lì)和補(bǔ)貼購買小排量汽車的消費(fèi)者,同時(shí)在部分地區(qū)采取對新車限量上號(hào).某市采取對新車限量上號(hào)政策,已知2013年年初汽車擁有量為=100萬輛),第年(2013年為第1年,2014年為第2年,依次類推)年初的擁有量記為,該年的增長量的乘積成正比,比例系數(shù)為其中=200萬.
(1)證明:;
(2)用表示;并說明該市汽車總擁有量是否能控制在200萬輛內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列,,
(1)求證:為等比數(shù)列,并求出通項(xiàng)公式
(2)記數(shù)列 的前項(xiàng)和為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的首項(xiàng)其中,令集合.
(Ⅰ)若,寫出集合中的所有的元素;
(Ⅱ)若,且數(shù)列中恰好存在連續(xù)的7項(xiàng)構(gòu)成等比數(shù)列,求的所有可能取值構(gòu)成的集合;
(Ⅲ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是等差數(shù)列,且,;又若是各項(xiàng)為正數(shù)的等比數(shù)列,且滿足,其前項(xiàng)和為,.
(1)分別求數(shù)列,的通項(xiàng)公式,;
(2)設(shè)數(shù)列的前項(xiàng)和為,求的表達(dá)式,并求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知正項(xiàng)數(shù)列的前項(xiàng)和為,的等比中項(xiàng).
(1)求證:數(shù)列是等差數(shù)列;
(2)若,且,求數(shù)列的通項(xiàng)公式;
(3)在(2)的條件下,若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,,前
(Ⅰ)求證:數(shù)列是等差數(shù)列; (Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)設(shè)數(shù)列的前項(xiàng)和為,是否存在實(shí)數(shù),使得對一切正整數(shù)都成立?若存在,求的最小值,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定常數(shù),定義函數(shù),數(shù)列滿足.
(1)若,求;
(2)求證:對任意,;
(3)是否存在,使得成等差數(shù)列?若存在,求出所有這樣的,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案