分析 (1)利用條件,分別代入直接求解;
(2)先說明當n=1時成立,再假設n=K(K∈N*)時,猜想成立,證明n=K+1時,猜想也成立.從而得證.
解答 解:(1)f1(x)=f0′(x)=$\frac{bc-ad}{(ax+b)^{2}}$,
f2(x)=f1′(x)=[$\frac{bc-ad}{(ax+b)^{2}}$]′=$\frac{-2a(bc-ad)}{(ax+b)^{3}}$;
(2)猜想fn(x)=$\frac{(-1)^{n-1}•{a}^{n-1}•(bc-ad)•n!}{(ax+b)^{n+1}}$,n∈N*,
證明:①當n=1時,由(1)知結論正確;
②假設當n=k,k∈N*時,結論正確,
即有fk(x)=$\frac{(-1)^{k-1}•{a}^{k-1}(bc-ad)•k!}{(ax+b)^{k+1}}$
=(-1)k-1ak-1(bc-ad)•(k+1)![(ax+b)-(k+1)]′=$\frac{(-1)^{k}•{a}^{k-1}•(bc-ad)•k!}{(ax+b)^{k+2}}$
所以當n=k+1時結論成立,
由①②得,對一切n∈N*結論正確.
點評 本題主要考查數(shù)學歸納法證明猜想,應注意證題的完整性.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|1<x<2} | B. | {x|1≤x<2} | C. | {x|1<x≤2} | D. | {x|1≤x≤2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $3-2\sqrt{2}$ | B. | 3 | C. | $-\frac{1}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com