9.如圖,半圓AOB是某愛國主義教育基地一景點的平面示意圖,半徑OA的長為1百米.為了保護景點,基地管理部門從道路l上選取一點C,修建參觀線路C-D-E-F,且CD,DE,EF均與半圓相切,四邊形CDEF是等腰梯形,設DE=t百米,記修建每1百米參觀線路的費用為f(t)萬元,經(jīng)測算f(t)=$\left\{\begin{array}{l}{5,0<t≤\frac{1}{3}}\\{8-\frac{1}{t},\frac{1}{3}<t<2}\end{array}\right.$

(1)用t表示線段EF的長;
(2)求修建參觀線路的最低費用.

分析 (1)設DQ與半圓相切于點Q,則由四邊形CDEF是等腰梯形知,OQ⊥DE,以CF所在直線為x軸,OQ所在直線為y軸,建立平面直角坐標系xoy.設EF與圓切于G點,連接OG,過點E作EH⊥OF,垂足為H.可得Rt△EHF≌Rt△OGF,HF=FG=EF-$\frac{1}{2}$t.利用EF2=1+HF2=1+$(EF-\frac{1}{2}t)^{2}$,解得EF.
(2)設修建該參觀線路的費用為y萬元.
①當$0<t≤\frac{1}{3}$,由y=5$[2(\frac{t}{4}+\frac{1}{t})+t]$=5$(\frac{3}{2}t+\frac{2}{t})$.利用y′,可得y在$(0,\frac{1}{3}]$上單調遞減,即可得出y的最小值.
②當$\frac{1}{3}<t<2$時,y=$(8-\frac{1}{t})$$[2(\frac{t}{4}+\frac{1}{t})+t]$=12t+$\frac{16}{t}$-$\frac{3}{2}$-$\frac{2}{{t}^{2}}$.利用導數(shù)研究函數(shù)的單調性極值最值即可得出.

解答 解:(1)設DQ與半圓相切于點Q,則由四邊形CDEF是等腰梯形知,OQ⊥DE,
以CF所在直線為x軸,OQ所在直線為y軸,
建立平面直角坐標系xoy.
設EF與圓切于G點,連接OG,過點E作EH⊥OF,垂足為H.
∵EH=OG,∠OFG=∠EFH,∠GOF=∠HEF,
∴Rt△EHF≌Rt△OGF,∴HF=FG=EF-$\frac{1}{2}$t.
∴EF2=1+HF2=1+$(EF-\frac{1}{2}t)^{2}$,
解得EF=$\frac{t}{4}$+$\frac{1}{t}$(0<t<2).
(2)設修建該參觀線路的費用為y萬元.
①當$0<t≤\frac{1}{3}$,由y=5$[2(\frac{t}{4}+\frac{1}{t})+t]$=5$(\frac{3}{2}t+\frac{2}{t})$.y′=$5(\frac{3}{2}-\frac{2}{{t}^{2}})$<0,可得y在$(0,\frac{1}{3}]$上單調遞減,
∴t=$\frac{1}{3}$時,y取得最小值為32.5.
②當$\frac{1}{3}<t<2$時,y=$(8-\frac{1}{t})$$[2(\frac{t}{4}+\frac{1}{t})+t]$=12t+$\frac{16}{t}$-$\frac{3}{2}$-$\frac{2}{{t}^{2}}$.
y′=12-$\frac{16}{{t}^{2}}$+$\frac{2}{{t}^{3}}$=$\frac{4(t-1)(3{t}^{2}+3t-1)}{{t}^{3}}$.
∵$\frac{1}{3}<t<2$,∴3t2+3t-1>0.
∴t∈$(\frac{1}{3},1)$時,y′<0,函數(shù)y此時單調遞減;t∈(1,2)時,y′>0,函數(shù)y此時單調遞增.
∴t=1時,函數(shù)y取得最小值24.5.
由 ①②知,t=1時,函數(shù)y取得最小值為24.5.
答:(1)EF=$\frac{t}{4}$+$\frac{1}{t}$(0<t<2)(百米).(2)修建該參觀線路的最低費用為24.5萬元.

點評 本題考查了利用導數(shù)研究函數(shù)的極值與最值、不等式的性質、直線與圓相切的性質,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.某景區(qū)修建一棟復古建筑,其窗戶設計如圖所示.圓O的圓心與矩形ABCD對角線的交點重合,且圓與矩形上下兩邊相切(E為上切點),與左右兩邊相交(F,G為其中兩個交點),圖中陰影部分為不透光區(qū)域,其余部分為透光區(qū)域.已知圓的半徑為1m且$\frac{AB}{AD}$≥$\frac{1}{2}$,設∠EOF=θ,透光區(qū)域的面積為S.
(1)求S關于θ的函數(shù)關系式,并求出定義域;
(2)根據(jù)設計要求,透光區(qū)域與矩形窗面的面積比值越大越好.當該比值最大時,求邊AB的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=aex-blnx,曲線y=f(x)在點(1,f(1))處的切線方程為$y=(\frac{1}{e}-1)x+1$.
(1)求a,b;
(2)證明:f(x)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=2cos22x-2,給出下列命題:
①函數(shù)f(x)的值域為[-2,0];
②x=$\frac{π}{8}$為函數(shù)f(x)的一條對稱軸;
③?β∈R,f(x+β)為奇函數(shù);
④?α∈(0,$\frac{3π}{4}$),f(x)=f(x+2α)對x∈R恒成立,
其中的真命題有( 。
A.①②B.③④C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在平面直角坐標系xOy中,若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)經(jīng)過拋物線y2=8x的焦點,則該雙曲線的離心率是$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f0(x)=$\frac{cx+d}{ax+b}$(a≠0,ac-bd≠0),設fn(x)為fn-1(x)的導數(shù),n∈N*
(1)求f1(x),f2(x)
(2)猜想fn(x)的表達式,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.在信息時代的今天,隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式,某機構對“使用微信交流”的態(tài)度進行調查,隨機抽取了100人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成的人數(shù)如下表:(注:年齡單位:歲)
年齡[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)1030302055
贊成人數(shù)825241021
(1)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面的2×2列聯(lián)表,并通過計算判斷是否在犯錯誤的概率不超過0.001的前提下認為“使用微信交流的態(tài)度與人的年齡有關”?
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計
贊成
不贊成
合計
(2)若從年齡在[55,65),[65,75)的別調查的人中各隨機選取兩人進行追蹤調查,記選中的4人中贊成“使用微信交流”的人數(shù)為X,求隨機變量X的分布列及數(shù)學期望.
參考數(shù)據(jù):
P(K2≥k00.0250.0100.005 0.001
k03.8416.6357.879 10.828
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點為F(-1,0),左準線為x=-2.
(1)求橢圓C的標準方程;
(2)已知直線l交橢圓C于A,B兩點.
①若直線l經(jīng)過橢圓C的左焦點F,交y軸于點P,且滿足$\overrightarrow{PA}=λ\overrightarrow{AF}$$\overrightarrow{PB}=μ\overrightarrow{BF}$,求證:λ+μ為常數(shù);
②若OA⊥OB(O為原點),求△AOB的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設數(shù)列{an}滿足a2+a4=10,點Pn(n,an)對任意的n∈N*,都有向量$\overrightarrow{{P_n}{P_{n+1}}}=({1,2})$,則數(shù)列{an}的前n項和Sn=n2

查看答案和解析>>

同步練習冊答案