6.已知直線2x-$\sqrt{3}$y=0為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線,則該雙曲線的離心率為$\frac{\sqrt{21}}{3}$.

分析 根據(jù)題意,由雙曲線的方程可得其漸近線方程為y=±$\frac{a}$x,結(jié)合題意可得$\frac{a}$=$\frac{2}{\sqrt{3}}$,又由雙曲線離心率公式e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{{a}^{2}+^{2}}{{a}^{2}}$=1+$\frac{^{2}}{{a}^{2}}$,計算可得答案.

解答 解:根據(jù)題意,雙曲線的方程為:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$,
其漸近線方程為:y=±$\frac{a}$x,
又由其一條漸近線的方程為:2x-$\sqrt{3}$y=0,即y=$\frac{2}{\sqrt{3}}x$,
則有$\frac{a}$=$\frac{2}{\sqrt{3}}$,
則其離心率e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{{a}^{2}+^{2}}{{a}^{2}}$=1+$\frac{^{2}}{{a}^{2}}$=$\frac{7}{3}$,
則有e=$\frac{\sqrt{21}}{3}$;
故答案為:$\frac{\sqrt{21}}{3}$.

點評 本題考查雙曲線的幾何性質(zhì),關(guān)鍵是熟悉雙曲線的離心率公式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.若雙曲線$\frac{x^2}{3-m}+\frac{y^2}{m-1}=1$的漸近線方程為$y=±\frac{1}{2}x$,則m的值為( 。
A.-1B.$\frac{1}{3}$C.$\frac{11}{3}$D.-1或$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=2cos22x-2,給出下列命題:
①函數(shù)f(x)的值域為[-2,0];
②x=$\frac{π}{8}$為函數(shù)f(x)的一條對稱軸;
③?β∈R,f(x+β)為奇函數(shù);
④?α∈(0,$\frac{3π}{4}$),f(x)=f(x+2α)對x∈R恒成立,
其中的真命題有( 。
A.①②B.③④C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f0(x)=$\frac{cx+d}{ax+b}$(a≠0,ac-bd≠0),設(shè)fn(x)為fn-1(x)的導數(shù),n∈N*
(1)求f1(x),f2(x)
(2)猜想fn(x)的表達式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.在信息時代的今天,隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式,某機構(gòu)對“使用微信交流”的態(tài)度進行調(diào)查,隨機抽取了100人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成的人數(shù)如下表:(注:年齡單位:歲)
年齡[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)1030302055
贊成人數(shù)825241021
(1)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面的2×2列聯(lián)表,并通過計算判斷是否在犯錯誤的概率不超過0.001的前提下認為“使用微信交流的態(tài)度與人的年齡有關(guān)”?
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計
贊成
不贊成
合計
(2)若從年齡在[55,65),[65,75)的別調(diào)查的人中各隨機選取兩人進行追蹤調(diào)查,記選中的4人中贊成“使用微信交流”的人數(shù)為X,求隨機變量X的分布列及數(shù)學期望.
參考數(shù)據(jù):
P(K2≥k00.0250.0100.005 0.001
k03.8416.6357.879 10.828
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知直線l:mx+y-2m-1=0,圓C:x2+y2-2x-4y=0,當直線l被圓C所截得的弦長最短時,實數(shù)m=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點為F(-1,0),左準線為x=-2.
(1)求橢圓C的標準方程;
(2)已知直線l交橢圓C于A,B兩點.
①若直線l經(jīng)過橢圓C的左焦點F,交y軸于點P,且滿足$\overrightarrow{PA}=λ\overrightarrow{AF}$$\overrightarrow{PB}=μ\overrightarrow{BF}$,求證:λ+μ為常數(shù);
②若OA⊥OB(O為原點),求△AOB的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知數(shù)列{an}滿足a1=1,an+1=$\frac{a_n}{{2{a_n}+1}}$(n∈N*),bn=$\frac{a_n}{2n+1}$,則數(shù)列{bn}的前n項和Sn=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設(shè)Sn是等差數(shù)列{an}的前n項和,若a3+a5+a7=27,則S9=( 。
A.81B.79C.77D.75

查看答案和解析>>

同步練習冊答案