【題目】如圖,在三棱柱中,⊥,⊥,,為的中點(diǎn),且⊥.
(1)求證:⊥平面;(2)求三棱錐的體積.
【答案】解:(1)見(jiàn)解析;(2)=·CD
=A1B1×B1B×CD=×2×2×=.
【解析】
本題考查線線垂直,線面垂直及多面體的體積的求法技巧,轉(zhuǎn)化思想的應(yīng)用,考查計(jì)算能力
(1)證明CD⊥BB1,通過(guò)BB1⊥AB,AB∩CD=D,即可證明BB1⊥面ABC
(2)所求的體積進(jìn)行等價(jià)轉(zhuǎn)化可以知道幾何體的體積.
解:(1)∵AC=BC,D為AB的中點(diǎn),∴CD⊥AB,又∵CD⊥DA1,∴CD⊥平面ABB1A1,∴CD⊥BB1,
又BB1⊥AB,AB∩CD=D,∴BB1⊥平面ABC
(2)由(1)知CD⊥平面AA1B1B,故CD是三棱錐C-A1B1D的高,
在Rt△ACB中,AC=BC=2,∴AB=2,CD=,
又BB1=2,∴=·CD
=A1B1×B1B×CD=×2×2×=
請(qǐng)?jiān)诖溯斎朐斀猓?/span>
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)命題:
①“若,則”的逆否命題為真命題
②“”是“函數(shù)在區(qū)間上為增函數(shù)”的充分不必要條件
③若為假命題,則,均為假命題
④對(duì)于命題:,,則為:,
其中真命題的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了了解高一年級(jí)學(xué)生學(xué)習(xí)數(shù)學(xué)的狀態(tài),從期中考試成績(jī)中隨機(jī)抽取50名學(xué)生的數(shù)學(xué)成績(jī),按成績(jī)分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)由頻率分布直方圖,估計(jì)這50名學(xué)生數(shù)學(xué)成績(jī)的中位數(shù)和平均數(shù)(保留到0.01);
(2)該校高一年級(jí)共有1000名學(xué)生,若本次考試成績(jī)90分以上(含90分)為“優(yōu)秀”等次,則根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生數(shù)學(xué)成績(jī)達(dá)到“優(yōu)秀”等次的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲、乙兩地生產(chǎn)同一種瓷器,現(xiàn)從兩地的瓷器中隨機(jī)抽取了一共300件統(tǒng)計(jì)質(zhì)量指標(biāo)值,得到如圖的兩個(gè)統(tǒng)計(jì)圖,其中甲地瓷器的質(zhì)量指標(biāo)值在區(qū)間和的頻數(shù)相等.
甲地瓷器質(zhì)量頻率分布直方圖 乙地瓷器質(zhì)量扇形統(tǒng)計(jì)圖
(1)求直方圖中的值,并估計(jì)甲地瓷器質(zhì)量指標(biāo)值的平均值;(同一組中的數(shù)據(jù)用區(qū)間的中點(diǎn)值作代表)
(2)規(guī)定該種瓷器的質(zhì)量指標(biāo)值不低于125為特等品,且已知樣本中甲地的特等品比乙地的特等品多10個(gè),結(jié)合乙地瓷器質(zhì)量扇形統(tǒng)計(jì)圖完成下面的列聯(lián)表,并判斷是否有95%的把握認(rèn)為甲、乙兩地的瓷器質(zhì)量有差異?
物等品 | 非特等品 | 合計(jì) | |
甲地 | |||
乙地 | |||
合計(jì) |
附:,其中.
0.10 | 0.05 | 0.025 | 0.01 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】3個(gè)紅球與3個(gè)黑球隨機(jī)排成一行,從左到右依次在球上標(biāo)記1,2,3,4,5,6,則紅球上的數(shù)字之和小于黑球上的數(shù)字之和的概率為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)際羽毛球比賽規(guī)則從2006年5月開(kāi)始,正式?jīng)Q定實(shí)行21分的比賽規(guī)則和每球得分制,并且每次得分者發(fā)球,所有單項(xiàng)的每局獲勝分至少是21分,最高不超過(guò)30分,即先到21分的獲勝一方贏得該局比賽,如果雙方比分為時(shí),獲勝的一方需超過(guò)對(duì)方2分才算取勝,直至雙方比分打成時(shí),那么先到第30分的一方獲勝.在一局比賽中,甲發(fā)球贏球的概率為,甲接發(fā)球贏球的概率為,則在比分為,且甲發(fā)球的情況下,甲以贏下比賽的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】魯班鎖是中國(guó)傳統(tǒng)的智力玩具,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,十分巧妙,外觀看是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對(duì)稱,從外表上看,六根等長(zhǎng)的正四棱柱分成三組,經(jīng)榫卯起來(lái),如圖,若正四棱柱的高為,底面正方形的邊長(zhǎng)為,現(xiàn)將該魯班鎖放進(jìn)一個(gè)球形容器內(nèi),則該球形容器的表面積的最小值為( )(容器壁的厚度忽略不計(jì))
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,已知,且對(duì)一切都成立.
(1)當(dāng)時(shí).
①求數(shù)列的通項(xiàng)公式;
②若,求數(shù)列的前項(xiàng)的和;
(2)是否存在實(shí)數(shù),使數(shù)列是等差數(shù)列.如果存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com