12.國內(nèi)某大學(xué)有男生6000人,女生4000人,該校想了解本校學(xué)生的運動狀況,根據(jù)性別采取分層抽樣的方法從全校學(xué)生中抽取100人,調(diào)查他們平均每天運動的時間(單位:小時),統(tǒng)計表明該校學(xué)生平均每天運動的時間范圍是[0,3],若規(guī)定平均每天運動的時間不少于2小時的學(xué)生為“運動達(dá)人”,低于2小時的學(xué)生為“非運動達(dá)人”,根據(jù)調(diào)查的數(shù)據(jù)按性別與“是否為‘運動達(dá)人’”進(jìn)行統(tǒng)計,得到如表2×2列聯(lián)表.
運動時間
性別 
運動達(dá)人非運動達(dá)人合計
男生 36  
女生  26 
合計  100 
(1)請根據(jù)題目信息,將2×2類聯(lián)表中的數(shù)據(jù)補充完整,并通過計算判斷能否在犯錯誤頻率不超過0.025的前提下認(rèn)為性別與“是否為‘運動達(dá)人’”有關(guān);
(2)將此樣本的頻率估計為總體的概率,隨機(jī)調(diào)查該校的3名男生,設(shè)調(diào)查的3人中運動達(dá)人的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望E(X)及方差D(X).
附表及公式:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

分析 (1)計算觀測值K2,根據(jù)臨界值表即可作出結(jié)論;
(2)分別計算X=0,1,2,3時的概率,寫出分布列,根據(jù)分布列得出數(shù)學(xué)期望和方差.

解答 解:(1)列聯(lián)表如下:

運動時間
性別
運動達(dá)人非運動達(dá)人合計
男生362460
女生142640
合計5050100
計算觀測值K2=$\frac{100{×(36×26-24×14)}^{2}}{60×40×50×50}$=6>5.024,
所以在犯錯誤概率不超過0.025的前提下可以認(rèn)為性別與“是否為‘運動達(dá)人’”有關(guān);
(2)隨機(jī)調(diào)查一名男生,則這名男生為運動達(dá)人的概率為
P=$\frac{36}{60}$=$\frac{3}{5}$,
X的可能取值為0,1,2,3;
所以P(X=0)=(1-$\frac{3}{5}$)3=$\frac{8}{125}$,
P(X=1)=${C}_{3}^{1}$•$\frac{3}{5}$•(1-$\frac{3}{5}$)2=$\frac{36}{125}$,
P(X=2)=${C}_{3}^{2}$•($\frac{3}{5}$)2(1-$\frac{3}{5}$)=$\frac{54}{125}$,
P(X=3)=($\frac{3}{5}$)3=$\frac{27}{125}$;
所以X的分布列為:
X0123
P$\frac{8}{125}$$\frac{36}{125}$$\frac{54}{125}$$\frac{27}{125}$
E(X)=3×$\frac{3}{5}$=$\frac{9}{5}$,
D(X)=3×$\frac{3}{5}$×(1-$\frac{3}{5}$)=$\frac{18}{25}$.

點評 本題考查了獨立性檢驗的應(yīng)用問題,也考查了離散型隨機(jī)變量的分布列、數(shù)學(xué)期望、方差的求法問題,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.觀察下列不等式:
$\frac{{1}^{2}}{1}$=1,
$\frac{{1}^{2}+{2}^{2}}{1+2}$=$\frac{5}{3}$,
$\frac{{1}^{2}+{2}^{2}+{3}^{2}}{1+2+3}$=$\frac{7}{3}$,
$\frac{{1}^{2}+{2}^{2}+{3}^{2}+{4}^{2}}{1+2+3+4}$=3
,$\frac{{1}^{2}+{2}^{2}+{3}^{2}+{4}^{2}+5^{2}}{1+2+3+4+5}$=$\frac{11}{3}$,
…,
依此規(guī)律,第n個等式為$\frac{{1}^{2}{+2}^{2}{+3}^{2}+…{+n}^{2}}{1+2+3+…+n}$=$\frac{2n+1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示,在四棱錐A-BCDE中,AE⊥面BCDE,△BCE是正三角形,BD和CE的交點F恰好平分CE,又AE=BE=2,∠CDE=120°,
(Ⅰ)證明:面ABD⊥面AEC;
(Ⅱ)求二面角B-CA-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對入院的60人進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
患心肺疾病不患心肺疾病合計
m6
12n
合計60
已知在女病人中隨機(jī)抽取一人,抽到患心肺疾病的人的概率為$\frac{2}{5}$.
(1)求出m,n;
(2)探討是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明理由;
參考:
①臨界值表
P(k2>k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
②${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=(a+1)x-lnx(a∈R).
(Ⅰ)若函數(shù)f(x)在點P(1,f(1))處的切線與直線y=2x+1垂直,求實數(shù)a的值;
(Ⅱ)若函數(shù)f(x)在x∈(0,e]上的最小值為3,求實數(shù)a的值;
(Ⅲ)當(dāng)x∈(0,e]時,證明:e2x2-xlnx>lnx+$\frac{5}{2}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,圓O與等腰直角三角形ABC的兩直角邊相切,交斜邊BC于F,G兩點,且BF=FG=$\sqrt{2}$,則圓O的半徑等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)關(guān)于x的方程k•9x-k•3x+1+6(k-5)=0在[0,2]內(nèi)有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)集合A={1,a,b},B={a,a2,ab},且A=B,求a2012+b2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)知集合M={x|x2-2x-3<0},N={x|1≤x≤6},則M∩N=( 。
A.(1,3]B.[1,3)C.[-1,1)D.(-1,1]

查看答案和解析>>

同步練習(xí)冊答案