1.復(fù)數(shù)4+3i的虛部為3.

分析 根據(jù)復(fù)數(shù)的概念進行求解即可.

解答 解:復(fù)數(shù)4+3i的虛部是3,
故答案為:3

點評 本題主要考查復(fù)數(shù)的有關(guān)概念,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將函數(shù)f(x)=2sin(2x-$\frac{π}{4}$)的圖象向左平移$\frac{π}{4}$個單位,得到函數(shù)g(x)的圖象,則g(0)=( 。
A.$\sqrt{2}$B.2C.0D.-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知拋物線y2=4px(p>0)的焦點也是雙曲線$\frac{{x}^{2}}{3p+8}$-$\frac{{y}^{2}}{p+4}$=1的一個焦點,則p=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.定義:如果函數(shù)f(x)在[a,b]上存在x1,x2(a<x1<x2<b)滿足f'(x1)=$\frac{f(b)-f(a)}{b-a}$,f'(x2)=$\frac{f(b)-f(a)}{b-a}$,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”,已知函數(shù)f(x)=2x3-x2+m是[0,2a]上“雙中值函數(shù)”,則實數(shù)a的取值范圍是( 。
A.($\frac{1}{8}$,$\frac{1}{4}$)B.($\frac{1}{12}$,$\frac{1}{4}$)C.($\frac{1}{12}$,$\frac{1}{8}$)D.($\frac{1}{8}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)y=2sin($\frac{2}{9}$x-$\frac{20π}{27}$),把它的圖象向左平移$\frac{π}{3}$個單位,再使其圖象上每點的縱坐標不變,橫坐標縮小為原來的$\frac{1}{3}$,得到的圖象對應(yīng)的解析式為( 。
A.y=2sin($\frac{2}{3}$x-$\frac{π}{9}$)B.y=2sin($\frac{2}{3}$x-$\frac{2π}{3}$)C.y=2sin($\frac{2}{3}$x-$\frac{5π}{9}$)D.y=2sin(6x-$\frac{7π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與拋物線y2=8x有一個公共的焦點F,兩曲線的一個交點為P,若|PF|=5,則雙曲線漸近線方程為x2-$\frac{{y}^{2}}{3}$=1,若Q為雙曲線左支的點,則三角形FPQ面積最小值是4$\sqrt{6}$-$\sqrt{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.觀察下列各式:a1+b1=1,a2+b2=3,a3+b3=5,a4+b4=7,…,則a11+b11=21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知全集U={1,2,4,6,8},集合A={2,6},B={1,2,4},則∁U(A∪B)={8}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知直線(a-2)x+ay-1=0與直線2x+3y+5=0平行,則a的值為( 。
A.-6B.6C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊答案