A. | (-∞,-1) | B. | (-l,0) | C. | (0,1) | D. | (1,2) |
分析 據(jù)函數(shù)零點(diǎn)的判定定理,判斷f(-1),f(0),f(1),f(2)的符號(hào),即可求得結(jié)論.
解答 解:f(-1)=2-1+1-2=-$\frac{1}{2}$<0,
f(0)=-1<0,f(1)=1>0,f(2)=4>0,
故有f(0)•f(1)<0,由零點(diǎn)的存在性定理可知:
函數(shù)f(x)=2x+x-2的零點(diǎn)所在的區(qū)間是(0,1)
故選:C.
點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn)的判定定理,解答關(guān)鍵是熟悉函數(shù)的零點(diǎn)存在性定理,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
是否近視 | 1~50 | 951~1000 | 合計(jì) |
年級(jí)名次 | |||
近視 | 41 | 32 | 73 |
不近視 | 9 | 18 | 27 |
合計(jì) | 50 | 50 | 100 |
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com