17.如圖設(shè)M為線段AB中點(diǎn),AE與BD交于點(diǎn)C,∠DME=∠A=∠B=α,且DM交AC于F,EM交BD于G.
(Ⅰ)寫出圖中三對(duì)相似三角形,并對(duì)其中一對(duì)作出證明;
(Ⅱ)連結(jié)FG,設(shè)α=45°,AB=4$\sqrt{2}$,AF=3,求FG長(zhǎng).

分析 (I)根據(jù)相似三角形的判定定理可得相似三角形.對(duì)△AMF∽△BGM給出以下證明分析:利用外角定理可得∠AMD=∠B+∠BDM,∠BGM=∠DMG+∠BDM,又∠B=∠A=∠DME=α,進(jìn)而證明.
(II)由(I)可得:△AMF∽△BGM,可得BG,由已知可得△ABC為等腰直角三角形,可得AC=BC=4,進(jìn)而得出CF,CG,再利用勾股定理即可得出FG.

解答 解:(I)根據(jù)相似三角形的判定定理可得:△AME∽△MFE,△BMD∽△MGD,△AMF∽△BGM.
對(duì)△AMF∽△BGM給出以下證明:
∵∠AMD=∠B+∠BDM,∠BGM=∠DMG+∠BDM,又∠B=∠A=∠DME=α,
∴∠AMF=∠BGM,∴△AMF∽△BGM.
(II)由(I)可得:△AMF∽△BGM,∴$\frac{BG}{AM}=\frac{BM}{AF}$,∴$BG=\frac{8}{3}$,
∵∠α=45°=∠A=∠B,
∴△ABC為等腰直角三角形,
∵AB=$4\sqrt{2}$,∴AC=BC=4,
∴CF=AC-AF=1,
CG=4-$\frac{8}{3}=\frac{4}{3}$,
∴FG=$\sqrt{C{F}^{2}+C{G}^{2}}$=$\frac{5}{3}$.

點(diǎn)評(píng) 本題考查了相似三角形的判定定理與性質(zhì)定理、外角性質(zhì)定理、等腰直角三角形的性質(zhì)、勾股定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知關(guān)于x的不等式|x-a|<b(b>0)的解集是-3<x<5,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖為焦點(diǎn)在x軸上的橢圓,且離心率e=$\frac{\sqrt{2}}{2}$,且過點(diǎn)A(-2,1),有橢圓上異于點(diǎn)A的點(diǎn)P出發(fā)的光線射到點(diǎn)A處被直線y=1反射后交橢圓于點(diǎn)Q(點(diǎn)Q與點(diǎn)P不重合).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)反射光線AQ過點(diǎn)(0,-3)時(shí),求△OAP的面積;
(3)求證:直線PQ的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=1,BC=$\sqrt{3}$,點(diǎn)M在棱CC1上,且MD1⊥MA,則當(dāng)△MAD1的面積最小時(shí),棱CC1的長(zhǎng)為( 。
A.$\frac{3}{2}$$\sqrt{2}$B.$\frac{\sqrt{10}}{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=2x+x-2的零點(diǎn)所在區(qū)間是(  )
A.(-∞,-1)B.(-l,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx+1.
(Ⅰ)證明:當(dāng)x>0時(shí),f(x)≤x;
(Ⅱ)設(shè)$g(x)=ax+({a-1})•\frac{1}{x}-lnx-1$,若g(x)≥0對(duì)x>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖1,已知直線l1∥l2,且l3和l1、l2分別交于A、B兩點(diǎn),l4和l1、l2分別交于C、D兩點(diǎn),∠ACP=∠1,∠BDP=∠2,∠CPD=∠3.點(diǎn)P在線段AB上.
(1)若∠1=22°,∠2=33°,則∠3=55°
(2)試找出∠1,∠2,∠3之間的等量關(guān)系說明理由.
(3)應(yīng)用(2)中的結(jié)論解答下題:
如圖2,點(diǎn)A在B處北偏東40°的方向上,在C處的北偏西45°的方向上,求∠BAC的度數(shù).
(4)如果點(diǎn)P在直線l3上且在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí),其他條件不變,試探究∠1、∠2、∠3之間的關(guān)系.(點(diǎn)P和A、B兩點(diǎn)不重合,直接寫出結(jié)論即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.小明在研究三棱錐的時(shí)候,發(fā)現(xiàn)下面一個(gè)真命題,在三棱錐A-BCD中,已知∠BAC=α,∠CAD=β,∠DAB=γ(如圖),設(shè)二面角B-AC-D的大小為θ,則cosθ=$\frac{f(λ)-cosαcosβ}{sinαsinβ}$,其中f(γ)是一個(gè)與γ有關(guān)的代數(shù)式,請(qǐng)寫出符合條件的f(γ)=cosγ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.若一數(shù)集的任一元素的倒數(shù)仍在該集合中,則稱該數(shù)集為“可倒數(shù)集”.
(1)判斷集合A={-1,1,2}是否為可倒數(shù)集.
(2)試寫出一個(gè)含3個(gè)元素的可倒數(shù)集.

查看答案和解析>>

同步練習(xí)冊(cè)答案