【題目】假設(shè)關(guān)于某設(shè)備的使用年限和所支出的維修費用 (萬元),有如下的統(tǒng)計數(shù)據(jù)由資料知對呈線性相關(guān),并且統(tǒng)計的五組數(shù)據(jù)得平均值分別為,,若用五組數(shù)據(jù)得到的線性回歸方程去估計,使用8年的維修費用比使用7年的維修費用多1.1萬元,
(1)求回歸直線方程;
(2)估計使用年限為10年時,維修費用是多少?
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)當, 恒成立,求實數(shù)的取值范圍.
(2)設(shè)在上有兩個極值點.
(A)求實數(shù)的取值范圍;
(B)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩點,直線相交于點,且這兩條直線的斜率之積為.
(1)求點的軌跡方程;
(2)記點的軌跡為曲線,曲線上在第一象限的點的橫坐標為,過點且斜率互為相反數(shù)的兩條直線分別交曲線于,求直線的斜率(其中點為坐標原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù) 圖像上的點P( ,t )向左平移s(s﹥0) 個單位長度得到點P′.若 P′位于函數(shù)y=sin2x的圖像上,則( )
A.t= ,s的最小值為
B.t= ,s的最小值為
C.t= ,s的最小值為
D.t= ,s的最小值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進行測試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標準差;
(2)比較兩個人的成績,然后決定選擇哪名學(xué)生參加射箭比賽.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小值為.
⑴設(shè),求證: 在上單調(diào)遞增;
⑵求證: ;
⑶求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為 ,A(a,0),B(0,b),O(0,0),△OAB的面積為1.
(1)求橢圓C的方程;
(2)設(shè)P的橢圓C上一點,直線PA與Y軸交于點M,直線PB與x軸交于點N。求證:lANl lBMl為定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)若F為棱PC上一點,滿足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線: ()的通徑(過焦點且垂直于對稱軸的弦)長為,橢圓: ()的離心率為,且過拋物線的焦點.
(1)求拋物線和橢圓的方程;
(2)過定點引直線交拋物線于、兩點(在的左側(cè)),分別過、作拋物線的切線, ,且與橢圓相交于、兩點,記此時兩切線, 的交點為.
①求點的軌跡方程;
②設(shè)點,求的面積的最大值,并求出此時點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com