【題目】函數(shù)是定義在(-1,1)上的奇函數(shù),且

(1)求函數(shù)的解析式;

(2)證明函數(shù)fx)在(-1,1)上是增函數(shù).

【答案】1fx)=; 2)見解析.

【解析】

1)由奇函數(shù)的性質(zhì)可得f0)=0,結(jié)合,代入可求ab;

2)先設(shè)﹣1x1x21,然后根據(jù)單調(diào)性的定義比較fx1)與fx2)的大小即可判斷.

1)∵是定義在(﹣1,1)上的奇函數(shù),

f00,

b0fx,

,

解可得,a1,

fx;

2)設(shè)﹣1x1x21,

fx1)﹣fx2,

∵﹣1x1x21,

x1x202x1x20,(2)(2)>0,

fx1)﹣fx2)<0fx1)<fx2),

∴函數(shù)fx)在(﹣1,1)上是增函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在創(chuàng)建“全國(guó)文明衛(wèi)生城”過(guò)程中,某市“創(chuàng)城辦”為了調(diào)查市民對(duì)創(chuàng)城工作的了解情況,進(jìn)行了一次創(chuàng)城知識(shí)問(wèn)卷調(diào)查(一位市民只能參加一次).通過(guò)隨機(jī)抽樣,得到參加問(wèn)卷調(diào)查的1000人的得分(滿分100分)統(tǒng)計(jì)結(jié)果如下表所示.

組別

頻數(shù)

25

150

200

250

225

100

50

(1)由頻數(shù)分布表可以大致認(rèn)為,此次問(wèn)卷調(diào)查的得分服從正態(tài)分布 近似為這1000人得分的平均值值(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示),請(qǐng)用正態(tài)分布的知識(shí)求;

(2)在(1)的條件下,“創(chuàng)城辦”為此次參加問(wèn)卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案::

(。┑梅植坏陀的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi);

(ⅱ)每次獲贈(zèng)送的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:

贈(zèng)送的隨機(jī)話費(fèi)(單元:元)

20

40

概率

0.75

0.25

現(xiàn)有市民甲要參加此次問(wèn)卷調(diào)查,記 (單位:元)為該市民參加問(wèn)卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列與數(shù)學(xué)期望.

附:參考數(shù)據(jù)與公式

,若,則

;

;

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校、兩個(gè)班的數(shù)學(xué)興趣小組在一次數(shù)學(xué)對(duì)抗賽中的成績(jī)繪制莖葉圖如下通過(guò)莖葉圖比較兩班數(shù)學(xué)興趣小組成績(jī)的平均值及方差

班數(shù)學(xué)興趣小組的平均成績(jī)高于班的平均成績(jī)

班數(shù)學(xué)興趣小組的平均成績(jī)高于班的平均成績(jī)

班數(shù)學(xué)興趣小組成績(jī)的標(biāo)準(zhǔn)差大于班成績(jī)的標(biāo)準(zhǔn)差

班數(shù)學(xué)興趣小組成績(jī)的標(biāo)準(zhǔn)差大于班成績(jī)的標(biāo)準(zhǔn)差

其中正確結(jié)論的編號(hào)為( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了迎接世博會(huì),某旅游區(qū)提倡低碳生活,在景區(qū)提供自行車出租。該景區(qū)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元。根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過(guò)6元,則自行車可以全部租出;若超出6元,則每超過(guò)1元,租不出的自行車就增加3輛。為了便于結(jié)算,每輛自行車的日租金x(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費(fèi)用,用y(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費(fèi)用后的所得).

1)求函數(shù)的解析式及其定義域;

2)試問(wèn)當(dāng)每輛自行車的日租金定為多少元時(shí),才能使一日的凈收入最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)處取得極值,求的值;

(2)設(shè),試討論函數(shù)的單調(diào)性;

(3)當(dāng)時(shí),若存在正實(shí)數(shù)滿足,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= lnxx,其中a>0.

(1)f(x)(0,+∞)上存在極值點(diǎn),求a的取值范圍;

(2)設(shè)a(1,e],當(dāng)x1(0,1),x2(1,+∞)時(shí),記f(x2)-f(x1)的最大值為M(a).那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓,且點(diǎn)到橢圓C的兩焦點(diǎn)的距離之和為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ),是橢圓上的兩個(gè)點(diǎn),線段的中垂線的斜率為,且直線交于點(diǎn),求證:點(diǎn)在直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,側(cè)面底面,底面是平行四邊形, , 的中點(diǎn),點(diǎn)在線段上.

(Ⅰ)求證: ;

(Ⅱ)試確定點(diǎn)的位置,使得直線與平面所成的角和直線與平面所成的角相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四面體及其三視圖如圖所示,過(guò)棱的中點(diǎn)作平行于、的平面分別交四面體的棱、于點(diǎn)、

(1)求證:四邊形是矩形;

(2)求點(diǎn)到面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案