【題目】若數(shù)列滿足n≥2時,,則稱數(shù)列(n)L數(shù)列

1)若,且L數(shù)列,求數(shù)列的通項公式;

2)若,且L數(shù)列為遞增數(shù)列,求k的取值范圍;

3)若,其中p1,記L數(shù)列的前n項和為,試判斷是否存在等差數(shù)列,對任意n,都有成立,并證明你的結(jié)論.

【答案】1;(2(1,+∞);(3)存在滿足條件的等差數(shù)列,見解析

【解析】

1)由題意知,利用累乘法即可求得通項公式;(2)由可得,設(shè),根據(jù)題意{bn}為遞增數(shù)列,只需0恒成立即可求得滿足題意的k值;(3)根據(jù)的通項公式求出,利用放縮法及等比數(shù)列的前n項和公式可得,再次利用放縮可得,設(shè),易證其為等差數(shù)列,結(jié)論成立.

1)由題意知,,

所以,

即數(shù)列的通項公式為.

2)因為,且n≥2,nN*時,,所以,

設(shè),nN*,所以1

因為{bn}為遞增數(shù)列,所以nN*恒成立,

0恒成立.

因為,

所以0等價于

0k1時,因為n1時,,不符合題意.

k1時,,所以,

綜上,k的取值范圍是

3)存在滿足條件的等差數(shù)列,證明如下:

因為,k,

所以,又因為,所以,

所以,

,因為,所以,

設(shè),則,且

所以存在等差數(shù)列滿足題意.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】眾所周知的太極圖,其形狀如對稱的陰陽兩魚互抱在一起,也被稱為陰陽魚太極圖.如圖是放在平面直角坐標系中的太極圖.整個圖形是一個圓形.其中黑色陰影區(qū)域在y軸右側(cè)部分的邊界為一個半圓,給出以下命題:

①在太極圖中隨機取一點,此點取自黑色陰影部分的概率是

②當時,直線yax+2a與白色部分有公共點;

③黑色陰影部分(包括黑白交界處)中一點(x,y),則x+y的最大值為2;

④設(shè)點P(﹣2b),點Q在此太極圖上,使得∠OPQ45°,b的范圍是[22]

其中所有正確結(jié)論的序號是(

A.①④B.①③C.②④D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】受突如其來的新冠疫情的影響,全國各地學(xué)校都推遲2020年的春季開學(xué).某學(xué)!巴Un不停學(xué)”,利用云課平臺提供免費線上課程.該學(xué)校為了解學(xué)生對線上課程的滿意程度,隨機抽取了500名學(xué)生對該線上課程評分.其頻率分布直方圖如下:若根據(jù)頻率分布直方圖得到的評分低于80分的概率估計值為0.45.

1)(i)求直方圖中的a,b值;

ii)若評分的平均值和眾數(shù)均不低于80分視為滿意,判斷該校學(xué)生對線上課程是否滿意?并說明理由(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);

2)若采用分層抽樣的方法,從樣本評分在[60,70)和[90,100]內(nèi)的學(xué)生中共抽取5人進行測試來檢驗他們的網(wǎng)課學(xué)習(xí)效果,再從中選取2人進行跟蹤分析,求這2人中至少一人評分在[60,70)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,.過焦點且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.

1)求橢圓的標準方程;

2)設(shè)過點的直線與橢圓相交于,兩點,若,問直線是否存在?若存在,求直線的斜率的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PAPDE,F分別為AD,PB的中點.求證:

1EF//平面PCD;

2)平面PAB平面PCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以,,,,,為頂點的五面體中,平面平面,,四邊形為平行四邊形,且.

1)求證:

2)若,,直線與平面所成角為60°,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)計劃用他姓名的首字母,身份證的后4位數(shù)字(4位數(shù)字都不同)以及3個符號設(shè)置一個六位的密碼.若必選,且符號不能超過兩個,數(shù)字不能放在首位和末位,字母和數(shù)字的相對順序不變,則他可設(shè)置的密碼的種數(shù)為(

A.864B.1009C.1225D.1441

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知曲線的參數(shù)方程:為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求曲線的普通方程;

2)過曲線上一點作直線與曲線交于兩點,中點為,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國新型冠狀病毒肺炎疫情期間,以網(wǎng)絡(luò)購物和網(wǎng)上服務(wù)所代表的新興消費展現(xiàn)出了強大的生命力,新興消費將成為我國消費增長的新動能.某市為了了解本地居民在20202月至3月兩個月網(wǎng)絡(luò)購物消費情況,在網(wǎng)上隨機對1000人做了問卷調(diào)查,得如下頻數(shù)分布表:

網(wǎng)購消費情況(元)

頻數(shù)

300

400

180

60

60

1)作出這些數(shù)據(jù)的頻率分布直方圖,并估計本市居民此期間網(wǎng)絡(luò)購物的消費平均值;

2)在調(diào)查問卷中有一項是填寫本人年齡,為研究網(wǎng)購金額和網(wǎng)購人年齡的關(guān)系,以網(wǎng)購金額是否超過4000元為標準進行分層抽樣,從上述1000人中抽取200人,得到如下列聯(lián)表,請將表補充完整并根據(jù)列聯(lián)表判斷,在此期間是否有95%的把握認為網(wǎng)購金額與網(wǎng)購人年齡有關(guān).

網(wǎng)購不超過4000

網(wǎng)購超過4000

總計

40歲以上

75

100

40歲以下(含40歲)

總計

200

參考公式和數(shù)據(jù):.(其中為樣本容量)

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊答案