【題目】若數(shù)列滿足n≥2時,,則稱數(shù)列(n)為的“L數(shù)列”.
(1)若,且的“L數(shù)列”為,求數(shù)列的通項公式;
(2)若,且的“L數(shù)列”為遞增數(shù)列,求k的取值范圍;
(3)若,其中p>1,記的“L數(shù)列”的前n項和為,試判斷是否存在等差數(shù)列,對任意n,都有成立,并證明你的結(jié)論.
【答案】(1);(2)(1,+∞);(3)存在滿足條件的等差數(shù)列,見解析
【解析】
(1)由題意知即,利用累乘法即可求得通項公式;(2)由可得,設(shè),根據(jù)題意{bn}為遞增數(shù)列,只需->0恒成立即可求得滿足題意的k值;(3)根據(jù)的通項公式求出,利用放縮法及等比數(shù)列的前n項和公式可得,再次利用放縮可得,設(shè),易證其為等差數(shù)列,結(jié)論成立.
(1)由題意知,即,
所以,
即數(shù)列的通項公式為.
(2)因為,且n≥2,n∈N*時,,所以,
設(shè),n∈N*,所以1-.
因為{bn}為遞增數(shù)列,所以對n∈N*恒成立,
即->0對恒成立.
因為-=,
所以->0等價于.
當0<k≤1時,因為n=1時,,不符合題意.
當k>1時,,所以,
綜上,k的取值范圍是.
(3)存在滿足條件的等差數(shù)列,證明如下:
因為,k,
所以,又因為,所以,
所以,
即,因為,所以,
設(shè),則,且,
所以存在等差數(shù)列滿足題意.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】眾所周知的“太極圖”,其形狀如對稱的陰陽兩魚互抱在一起,也被稱為“陰陽魚太極圖”.如圖是放在平面直角坐標系中的“太極圖”.整個圖形是一個圓形.其中黑色陰影區(qū)域在y軸右側(cè)部分的邊界為一個半圓,給出以下命題:
①在太極圖中隨機取一點,此點取自黑色陰影部分的概率是
②當時,直線y=ax+2a與白色部分有公共點;
③黑色陰影部分(包括黑白交界處)中一點(x,y),則x+y的最大值為2;
④設(shè)點P(﹣2,b),點Q在此太極圖上,使得∠OPQ=45°,b的范圍是[﹣2,2].
其中所有正確結(jié)論的序號是( )
A.①④B.①③C.②④D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】受突如其來的新冠疫情的影響,全國各地學(xué)校都推遲2020年的春季開學(xué).某學(xué)!巴Un不停學(xué)”,利用云課平臺提供免費線上課程.該學(xué)校為了解學(xué)生對線上課程的滿意程度,隨機抽取了500名學(xué)生對該線上課程評分.其頻率分布直方圖如下:若根據(jù)頻率分布直方圖得到的評分低于80分的概率估計值為0.45.
(1)(i)求直方圖中的a,b值;
(ii)若評分的平均值和眾數(shù)均不低于80分視為滿意,判斷該校學(xué)生對線上課程是否滿意?并說明理由(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);
(2)若采用分層抽樣的方法,從樣本評分在[60,70)和[90,100]內(nèi)的學(xué)生中共抽取5人進行測試來檢驗他們的網(wǎng)課學(xué)習(xí)效果,再從中選取2人進行跟蹤分析,求這2人中至少一人評分在[60,70)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,.過焦點且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.
(1)求橢圓的標準方程;
(2)設(shè)過點的直線與橢圓相交于,兩點,若,問直線是否存在?若存在,求直線的斜率的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PAPD,E,F分別為AD,PB的中點.求證:
(1)EF//平面PCD;
(2)平面PAB平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以,,,,,為頂點的五面體中,平面平面,,四邊形為平行四邊形,且.
(1)求證:;
(2)若,,直線與平面所成角為60°,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)計劃用他姓名的首字母,身份證的后4位數(shù)字(4位數(shù)字都不同)以及3個符號設(shè)置一個六位的密碼.若必選,且符號不能超過兩個,數(shù)字不能放在首位和末位,字母和數(shù)字的相對順序不變,則他可設(shè)置的密碼的種數(shù)為( )
A.864B.1009C.1225D.1441
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知曲線的參數(shù)方程:(為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程;
(2)過曲線上一點作直線與曲線交于兩點,中點為,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國新型冠狀病毒肺炎疫情期間,以網(wǎng)絡(luò)購物和網(wǎng)上服務(wù)所代表的新興消費展現(xiàn)出了強大的生命力,新興消費將成為我國消費增長的新動能.某市為了了解本地居民在2020年2月至3月兩個月網(wǎng)絡(luò)購物消費情況,在網(wǎng)上隨機對1000人做了問卷調(diào)查,得如下頻數(shù)分布表:
網(wǎng)購消費情況(元) | |||||
頻數(shù) | 300 | 400 | 180 | 60 | 60 |
(1)作出這些數(shù)據(jù)的頻率分布直方圖,并估計本市居民此期間網(wǎng)絡(luò)購物的消費平均值;
(2)在調(diào)查問卷中有一項是填寫本人年齡,為研究網(wǎng)購金額和網(wǎng)購人年齡的關(guān)系,以網(wǎng)購金額是否超過4000元為標準進行分層抽樣,從上述1000人中抽取200人,得到如下列聯(lián)表,請將表補充完整并根據(jù)列聯(lián)表判斷,在此期間是否有95%的把握認為網(wǎng)購金額與網(wǎng)購人年齡有關(guān).
網(wǎng)購不超過4000元 | 網(wǎng)購超過4000元 | 總計 | |
40歲以上 | 75 | 100 | |
40歲以下(含40歲) | |||
總計 | 200 |
參考公式和數(shù)據(jù):.(其中為樣本容量)
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com