【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,長(zhǎng)軸長(zhǎng)為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程及離心率;
(Ⅱ)過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn),若點(diǎn)滿足,求證:由點(diǎn) 構(gòu)成的曲線關(guān)于直線對(duì)稱.
【答案】(Ⅰ),離心率;(Ⅱ)見(jiàn)解析
【解析】
(Ⅰ)由已知,得a,c=1,所以,由 ,所以b,即可求出橢圓方程及離心率;(Ⅱ)設(shè)A(x1,y1),B(x2,y2),,分兩種情況,借助韋達(dá)定理和向量的運(yùn)算,求出點(diǎn)M構(gòu)成的曲線L的方程為2x2+3y2﹣2y=0,即可證明。
(Ⅰ)由已知,得,所以,
又,所以
所以橢圓的標(biāo)準(zhǔn)方程為,離心率.
(Ⅱ)設(shè),, ,
①直線 與軸垂直時(shí),點(diǎn)的坐標(biāo)分別為,.
因?yàn)?/span>,,,
所以.
所以,即點(diǎn)與原點(diǎn)重合;
②當(dāng)直線與軸不垂直時(shí),設(shè)直線的方程為,
由
得,.
所以.
則,
因?yàn)?/span>,,,
所以.
所以,.,,
消去得.
綜上,點(diǎn)構(gòu)成的曲線的方程為
對(duì)于曲線的任意一點(diǎn),它關(guān)于直線的對(duì)稱點(diǎn)為.
把的坐標(biāo)代入曲線的方程的左端:.
所以點(diǎn)也在曲線上.
所以由點(diǎn)構(gòu)成的曲線關(guān)于直線對(duì)稱.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間與極值.
(2)當(dāng)時(shí),是否存在,使得成立?若存在,求實(shí)數(shù)的取值范圍,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列為首項(xiàng)是4,公差為1的等差數(shù)列,為數(shù)列的前項(xiàng)和,且。
(1)求數(shù)列及的通項(xiàng)公式和;
(2)問(wèn)是否存在使成立?若存在,求出,若不存在,說(shuō)明理由;
(3)對(duì)任意的正數(shù),不等式恒成立,求正數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,且acos C+asin C-b-c=0.
(1)求A;
(2)若AD為BC邊上的中線,cos B=,AD=,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,空間直角坐標(biāo)系中,四棱錐的底面是邊長(zhǎng)為的正方形,且底面在平面內(nèi),點(diǎn)在軸正半軸上,平面,側(cè)棱與底面所成角為45°;
(1)若是頂點(diǎn)在原點(diǎn),且過(guò)、兩點(diǎn)的拋物線上的動(dòng)點(diǎn),試給出與滿足的關(guān)系式;
(2)若是棱上的一個(gè)定點(diǎn),它到平面的距離為(),寫出、兩點(diǎn)之間的距離,并求的最小值;
(3)是否存在一個(gè)實(shí)數(shù)(),使得當(dāng)取得最小值時(shí),異面直線與互相垂直?請(qǐng)說(shuō)明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線經(jīng)過(guò)點(diǎn),兩條漸近線的夾角為,直線交雙曲線于、.
(1)求雙曲線的方程;
(2)若過(guò)原點(diǎn),為雙曲線上異于、的一點(diǎn),且直線、的斜率為、,證明:為定值;
(3)若過(guò)雙曲線的右焦點(diǎn),是否存在軸上的點(diǎn),使得直線繞點(diǎn)無(wú)論怎樣轉(zhuǎn)動(dòng),都有成立?若存在,求出的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)y=f(x),x∈D,若存在閉區(qū)間[a,b]和常數(shù)C,使得對(duì)任意x∈[a,b]都有f(x)=C,稱f(x)為“橋函數(shù)”.
(1)作出函數(shù)的圖象,并說(shuō)明f(x)是否為“橋函數(shù)”?(不必證明)
(2)設(shè)f(x)定義域?yàn)?/span>R,判斷“f(x)為奇函數(shù)”是“為’橋函數(shù)’”的什么條件?給出你的結(jié)論并說(shuō)明理由;
(3)若函數(shù)是“橋函數(shù)”,求常數(shù)m、n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計(jì)算圓的周長(zhǎng),面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個(gè)近似數(shù)值,這個(gè)結(jié)果是當(dāng)時(shí)世界上圓周率計(jì)算的最精確數(shù)據(jù).如圖,當(dāng)分割到圓內(nèi)接正六邊形時(shí),某同學(xué)利用計(jì)算機(jī)隨機(jī)模擬法向圓內(nèi)隨機(jī)投擲點(diǎn),計(jì)算得出該點(diǎn)落在正六邊形內(nèi)的頻率為0.8269,那么通過(guò)該實(shí)驗(yàn)計(jì)算出來(lái)的圓周率近似值為(參考數(shù)據(jù):)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com