計算:(1+2-
1
32
)(1+2-
1
16
)(1+2-
1
8
)(1+2-
1
4
)(1+2-
1
2
).
考點:有理數(shù)指數(shù)冪的運算性質(zhì)
專題:計算題
分析:在等式兩邊同時乘以(1-2-
1
32
),利用平方差公式進行化簡求解,從而可求出所求.
解答: 解:原式=(1-2-
1
32
)(1+2-
1
32
)(1+2-
1
16
)(1+2-
1
8
)(1+2-
1
4
)(1+2-
1
2
(1-2-
1
32
)-1

=(1-2-
1
16
)(1+2-
1
16
)(1+2-
1
8
)(1+2-
1
4
)(1+2-
1
2
(1-2-
1
32
)-1

=…
=
1
2
(1-2-
1
32
)-1
點評:本題主要考查了有理指數(shù)冪的運算性質(zhì),解題的關(guān)鍵是陪湊成平方差公式,同時考查了學(xué)生分析問題和解決問題的能力,以及運算求解的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知一雙曲線與橢圓4x2+y2=64有相同的焦點,且該雙曲線的實軸長與虛軸長之比為
3
:3,求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

共點的四條直線最多能確定
 
個平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程x2+(1+a)x-2a=0兩根分別在(0,1)與(1,2)內(nèi),求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)中,表示相等函數(shù)的是( 。
A、y=|x|與y=(
x
2
B、y=1與y=x0
C、y=x與y=
3x3
D、y=x-3與y=
x2-9
x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2-ax-3a
在[2,+∞)上單調(diào)遞增,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的奇函數(shù)f(x)與偶函數(shù)g(x)滿足f(x)+g(x)=x2+3x+1,求f(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義行列式運算
.
a1a2
b1b2
.
=a1b2-a2b2,將函數(shù)f(x)=
.
3
sin2x
1cos2x
.
的圖象向左平移t(t>0)個單位,所得圖象對應(yīng)的函數(shù)為奇函數(shù),則t的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)關(guān)于某種設(shè)備的使用年限x(年)與所支出的維修費用y(萬元)有如下統(tǒng)計資料:
x23456
y235.56.58
(1)求出y關(guān)于x的線性回歸方程;
(2)估計使用年限期完成為10時的維修費用y的值.

查看答案和解析>>

同步練習(xí)冊答案