6.若x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}x-3≤0\\ y-2≥0\\ y≤x+1\end{array}\right.$,則目標(biāo)函數(shù)z=7x-y的最小值為5.

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}x-3≤0\\ y-2≥0\\ y≤x+1\end{array}\right.$,作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{y=2}\\{y=x+1}\end{array}\right.$,解得A(1,2).
化目標(biāo)函數(shù)z=7x-y為y=7x-z,
由圖可知,當(dāng)直線y=7x-z過(guò)A(1,2)時(shí),直線在y軸上的截距最大,z有最小值為7×1-2=5.
故答案為:5.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=2x-x2,則函數(shù)f(x)的零點(diǎn)的個(gè)數(shù)為(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,$\overrightarrow{m}$=(2a,1),$\overrightarrow{n}$=(2b-c,cosC),且$\overrightarrow{m}$∥$\overrightarrow{n}$
(1)求角A的值;
(2)若△ABC的外接圓直徑為$\frac{4\sqrt{3}}{3}$,且b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)a=sin$\frac{3π}{5}$,b=cos$\frac{2π}{5}$,c=tan$\frac{2π}{5}$,則( 。
A.b<a<cB.b<c<aC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列等式一定成立的是( 。
A.a${\;}^{-\frac{1}{2}}$•a${\;}^{\frac{1}{2}}$=0B.a${\;}^{\frac{1}{2}}$÷a${\;}^{\frac{1}{3}}$=a${\;}^{\frac{5}{6}}$
C.(a32=a9D.a${\;}^{\frac{1}{2}}$•a${\;}^{\frac{1}{2}}$=a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.從雙曲線$\frac{x^2}{4}-\frac{y^2}{5}=1$的左焦點(diǎn)F引圓x2+y2=4的切線l,切點(diǎn)為T(mén),且l交雙曲線的右支于點(diǎn)P,若點(diǎn)M是線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則|OM|-|TM|的值為$\sqrt{5}-2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列命題中,正確的是( 。
A.存在x0>0,使得x0<sinx0
B.“l(fā)na>lnb”是“10a>10b”的充要條件
C.若sinα≠$\frac{1}{2}$,則α≠$\frac{π}{6}$
D.若函數(shù)f(x)=x3+3ax2+bx+a2在x=-1有極值0,則a=2,b=9或a=1,b=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,離心率為$\sqrt{2}$,且過(guò)點(diǎn)(4,-$\sqrt{10}$),點(diǎn)M(3,m)在雙曲線上.
(1)求雙曲線方程;
(2)求證:MF1⊥MF2
(3)從雙曲線的左焦點(diǎn)F1引以原點(diǎn)為圓心,實(shí)半軸長(zhǎng)為半徑的圓的切線,求切線與雙曲線的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知f(x)=$\sqrt{3}sin(2x+\frac{π}{3})-2{cos^2}x+\frac{3}{2}$.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊,且a=1,b+c=2,f(A)=1,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案