16.已知函數(shù)f(x)=2x-x2,則函數(shù)f(x)的零點(diǎn)的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

分析 可先結(jié)合函數(shù)的特點(diǎn)將問題轉(zhuǎn)化為研究兩個(gè)函數(shù)圖象交點(diǎn)的問題.繼而問題可獲得解答.

解答 解:由題意可知:
要研究函數(shù)f(x)=x2-2x的零點(diǎn)個(gè)數(shù),
只需研究函數(shù)y=2x,y=x2的圖象交點(diǎn)個(gè)數(shù)即可.
畫出函數(shù)y=2x,y=x2的圖象
由圖象可得有3個(gè)交點(diǎn),如第一象限的A(2,4),B(4,16)及第二象限的點(diǎn)C.
故選:C.

點(diǎn)評 本題考查的是函數(shù)零點(diǎn)的個(gè)數(shù)判定問題.在解答的過程當(dāng)中充分體現(xiàn)了函數(shù)與方程的思想、數(shù)形結(jié)合的思想以及問題轉(zhuǎn)化的思想.值得同學(xué)們體會(huì)和反思.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.(x-1)8展開式中第4項(xiàng)的二項(xiàng)式系數(shù)是(  )
A.70B.-70C.56D.-56

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列判斷中,正確的判斷是( 。ㄌ钚蛱(hào))
A.若$\overrightarrow{a}$∥$\overrightarrow$,則向量$\overrightarrow{a}$和$\overrightarrow$是相反向量
B.已知非零向量$\overrightarrow{a}$與$\overrightarrow$同向,則$\overrightarrow{a}$-$\overrightarrow$必與$\overrightarrow{a}$是平行向量
C.若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow$=λ$\overrightarrow{a}$(λ∈R)
D.若$\overrightarrow{a}$∥$\overrightarrow$,則|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“孿生函數(shù)”,例如解析式為y=2x2+1,值域?yàn)閧9}的“孿生函數(shù)”就有三個(gè),那么解析式為y=log2(x2-1),值域?yàn)閧1,5}的“孿生函數(shù)”共有( 。
A.6個(gè)B.7個(gè)C.8個(gè)D.9個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}對任意的自然數(shù)n滿足:a1+2a2+3a3+…+nan=2n-1.
(Ⅰ)求a1及通項(xiàng)an;
(Ⅱ)設(shè)數(shù)列$\{\frac{1}{a_n}\}$的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知全集U={x|x≤5,x∈N},A={1,2,3},B={3,4},則CU(A∪B)=( 。
A.{1,2,3,4}B.{0,5}C.{5}D.{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列$\{a_n^{\;}\}$滿足a1=2,${a_{n+1}}=2{a_n}+2\;\;(n∈{N^*})$.
(1)求證:數(shù)列$\{a_n^{\;}+2\}$是等比數(shù)列,并求出通項(xiàng)公式an;
(2)若數(shù)列$\{b_n^{\;}\}滿足b_n^{\;}={log_2}({a_n}+2)$,設(shè)Tn是數(shù)列$\{\frac{b_n}{{{a_n}+2}}\}$的前n項(xiàng)和,求證:${T_n}<\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.等比數(shù)列{an}中,a1+a2+a3=1,a4+a5+a6=8,則該等比數(shù)列的公比為(  )
A.-2B.2C.-2或1D.2或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若x,y滿足約束條件$\left\{\begin{array}{l}x-3≤0\\ y-2≥0\\ y≤x+1\end{array}\right.$,則目標(biāo)函數(shù)z=7x-y的最小值為5.

查看答案和解析>>

同步練習(xí)冊答案