【題目】已知函數(shù)是奇函數(shù).

1)求實(shí)數(shù)的值;

2)若,對(duì)任意恒成立,求實(shí)數(shù)取值范圍;

3)設(shè),,問(wèn)是否存在實(shí)數(shù)使函數(shù)上的最大值為?若存在,求出的值;若不存在,說(shuō)明理由.

【答案】123)不存在,理由見(jiàn)解析.

【解析】

1)根據(jù)定義域?yàn)?/span>R且為奇函數(shù)可知, 代入即可求得實(shí)數(shù)的值.

2)由(1)可得函數(shù)的解析式,并判斷出單調(diào)性.根據(jù)將不等式轉(zhuǎn)化為關(guān)于的不等式,結(jié)合時(shí)不等式恒成立,即可求得實(shí)數(shù)取值范圍;

3)先用表示函數(shù).根據(jù)求得的解析式,根據(jù)單調(diào)性利用換元法求得的值域.結(jié)合對(duì)數(shù)的定義域,即可求得的取值范圍.根據(jù)對(duì)數(shù)型復(fù)合函數(shù)的單調(diào)性,即可判斷在的取值范圍內(nèi)能否取到最大值0.

1)函數(shù)的定義域?yàn)?/span>R,且為奇函數(shù)

所以,

解得

2)由(1)可知當(dāng)時(shí),

因?yàn)?/span>,

解不等式可得

所以R上單調(diào)遞減,

所以不等式可轉(zhuǎn)化為

根據(jù)函數(shù)R上單調(diào)遞減

所不等式可化為

即不等式恒成立

所以恒成立

化簡(jiǎn)可得

由打勾函數(shù)的圖像可知,當(dāng)時(shí),

所以

3)不存在實(shí)數(shù).理由如下:

因?yàn)?/span>

代入可得,解得()

,

,易知R上為單調(diào)遞增函數(shù)

所以當(dāng)時(shí), ,

根據(jù)對(duì)數(shù)定義域的要求,所以滿(mǎn)足上恒成立

上恒成立

,

所以,

又因?yàn)?/span>

所以

對(duì)于二次函數(shù),開(kāi)口向上,對(duì)稱(chēng)軸為

因?yàn)?/span>

所以

所以對(duì)稱(chēng)軸一直位于的左側(cè),即二次函數(shù)內(nèi)單調(diào)遞增

所以,

假設(shè)存在滿(mǎn)足條件的實(shí)數(shù),:

當(dāng)時(shí), 由復(fù)合函數(shù)單調(diào)性的判斷方法,可知為減函數(shù),所以根據(jù)可知,

解得,所以舍去

當(dāng)時(shí), 復(fù)合函數(shù)單調(diào)性的判斷方法可知為增函數(shù),所以根據(jù)可知,

解得,所以舍去

綜上所述,不存在實(shí)數(shù)滿(mǎn)足條件成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來(lái),睡了一覺(jué),當(dāng)它醒來(lái)時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到達(dá)了終點(diǎn).用,分別表示烏龜和兔子所行的路程,為時(shí)間,則與故事情節(jié)相吻合的是( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100.設(shè)該公司的儀器月產(chǎn)量為臺(tái),當(dāng)月產(chǎn)量不超過(guò)400臺(tái)時(shí),總收益為元,當(dāng)月產(chǎn)量超過(guò)400臺(tái)時(shí),總收益為.(注:總收益=總成本+利潤(rùn))

1)將利潤(rùn)表示為月產(chǎn)量的函數(shù)

2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,長(zhǎng)軸長(zhǎng)為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線(xiàn)與橢圓交于兩點(diǎn),坐標(biāo)原點(diǎn)在以為直徑的圓上,點(diǎn).試求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),曲線(xiàn)的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.

1)求直線(xiàn)和曲線(xiàn)的極坐標(biāo)方程;

2)曲線(xiàn)分別交直線(xiàn)和曲線(xiàn)于點(diǎn)的最大值及相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為打贏打好脫貧攻堅(jiān)戰(zhàn),實(shí)現(xiàn)建檔立卡貧困人員穩(wěn)定增收,某地區(qū)把特色養(yǎng)殖確定為脫貧特色主導(dǎo)產(chǎn)業(yè),助力鄉(xiāng)村振興.現(xiàn)計(jì)劃建造一個(gè)室內(nèi)面積為平方米的矩形溫室大棚,并在溫室大棚內(nèi)建兩個(gè)大小、形狀完全相同的矩形養(yǎng)殖池,其中沿溫室大棚前、后、左、右內(nèi)墻各保留米寬的通道,兩養(yǎng)殖池之間保留2米寬的通道.設(shè)溫室的一邊長(zhǎng)度為米,如圖所示.

1)將兩個(gè)養(yǎng)殖池的總面積表示為的函數(shù),并寫(xiě)出定義域;

2)當(dāng)溫室的邊長(zhǎng)取何值時(shí),總面積最大?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)函數(shù)性質(zhì)的學(xué)習(xí),我們知道:函數(shù)的圖象關(guān)于軸成軸對(duì)稱(chēng)圖形的充要條件是為偶函數(shù)”.

1)若為偶函數(shù),且當(dāng)時(shí),,求的解析式,并求不等式的解集;

2)某數(shù)學(xué)學(xué)習(xí)小組針對(duì)上述結(jié)論進(jìn)行探究,得到一個(gè)真命題:函數(shù)的圖象關(guān)于直線(xiàn)成軸對(duì)稱(chēng)圖形的充要條件是為偶函數(shù)”.若函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),且當(dāng)時(shí),.

i)求的解析式;

ii)求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), .

(1)求的單調(diào)區(qū)間;

(2)若圖像上任意一點(diǎn)處的切線(xiàn)的斜率,的取值范圍;

(3)若對(duì)于區(qū)間上任意兩個(gè)不相等的實(shí)數(shù)都有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)試判斷1的極大值點(diǎn)還是極小值點(diǎn),并說(shuō)明理由;

(Ⅱ)設(shè)是函數(shù)的導(dǎo)函數(shù)求證 .

查看答案和解析>>

同步練習(xí)冊(cè)答案