分析 (1)設x為希望值,則有2x2-x-4=x,變形為2x2-2x-4=0,解方程即可.
(2)將f(x)=x轉(zhuǎn)化為ax2+bx+b-2=0.由已知,此方程有實根,則有△x≥0恒成立求解;
解答 解∵f(x)=ax2+(b+1)x+b-2(a≠0),
(1)當a=2,b=-2時,f(x)=2x2-x-4.
設x為其不動點,即2x2-x-4=x.
則2x2-2x-4=0.∴x1=-1,x2=2.即f(x)的不動點是-1,2.
(2)由f(x)=x得:ax2+bx+b-2=0.
由已知,此方程有實根,△x≥0恒成立,
即b2-4a(b-2)≥0.
即b2-4ab+8a≥0對任意b∈R恒成立.
∴△b≤0.,
∴16a2-32a≤0,
∴0≤a≤2.
點評 本題主要考查的知識點是二次函數(shù)的性質(zhì),方程的解法,方程根的情況以及垂直平分線定義的應用.其中根據(jù)已知中的新定義,構(gòu)造滿足條件的方程是解答本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com