3.等比數(shù)列{an}的公比不為1,若a1=1,且對(duì)任意的n∈N*,都有an+1、an、an+2成等差數(shù)列,則{an}的前5項(xiàng)和S5=11.

分析 運(yùn)用等差數(shù)列的性質(zhì)可得2an=an+1+an+2,令n=1可得a3+a2-2a1=0,設(shè)公比為q,由等比數(shù)列的通項(xiàng)公式,解方程可得q,再由等比數(shù)列的求和公式,計(jì)算可得前5項(xiàng)和S5

解答 解:對(duì)任意的n∈N*,都有an+1、an、an+2成等差數(shù)列,
即有2an=an+1+an+2
令n=1可得a3+a2-2a1=0,設(shè)公比為q,
則a1(q2+q-2)=0.
由q2+q-2=0解得q=-2或q=1(舍去),
則S5=$\frac{{a}_{1}(1-{q}^{5})}{1-q}$=$\frac{1-(-2)^{5}}{1-(-2)}$=11.
故答案為:11.

點(diǎn)評(píng) 本題考查等比數(shù)列和等差數(shù)列的通項(xiàng)、性質(zhì)以及求和公式的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在等差數(shù)列{an}中,已知a5=6,a8=15,求首項(xiàng)a1與公差d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)=x2-kx-8在[1,5]上具有單調(diào)性,則實(shí)數(shù)k的取值范圍是(-∞,2]∪[10,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.求下列各題中的函數(shù)f(x)的解析式.
(1)已知函數(shù)y=f(x)滿足2f(x)+f$({\frac{1}{x}})$=2x,x∈R且x≠0,求f(x);
(2)已知f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)=f(x)+2x,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.(Ⅰ)計(jì)算:(a${\;}^{\frac{8}{5}}$•b${\;}^{\frac{6}{5}}$)${\;}^{\frac{1}{2}}$÷$\root{5}{{a}^{4}}$÷$\root{5}{^{3}}$;
(Ⅱ)已知lga+lgb=2lg(a-2b),求$\frac{a}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.集合A={x|3≤x<7},B={x|2<x<10},求A∪B,A∩B,(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.對(duì)于函數(shù)若f(x)=ax2+(b+1)x+b-2(a≠0),存在實(shí)數(shù)x0,使f(x0)=x0成立,則稱x0為f(x)的“希望值”.
(1)當(dāng)a=2,b=-2時(shí),求f(x)的希望值;
(2)若對(duì)于任意實(shí)數(shù)b,函數(shù)f(x)恒有希望值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知f(x2-1)的定義域?yàn)?[-\sqrt{3},\sqrt{3}]$,則f(x-1)的定義域?yàn)椋ā 。?table class="qanwser">A.[-2,1]B.[0,3]C.[-1,2]D.[-$\sqrt{3}$,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖所示,A,B分別是單位圓與x軸、y軸正半軸的交點(diǎn),點(diǎn)P在單位圓上,∠AOP=θ(0<θ<π),C點(diǎn)坐標(biāo)為(-2,0),四邊形OAQP是平行四邊形.
(1)若$\overrightarrow{CB}∥\overrightarrow{OP}$,求$|{\overrightarrow{OQ}}|$.
(2)求$sin({2θ-\frac{π}{6}})$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案