分析 先求出數(shù)列{(23)n,n∈N∗}前n項(xiàng)和,再求出前n項(xiàng)和的極限,從而求出結(jié)果.
解答 解:數(shù)列{(23)n,n∈N∗}前n項(xiàng)和:
Sn=23[1−(23)n]1−23=2[1-(23)n],
∴數(shù)列{(23)n,n∈N∗}所有項(xiàng)的和為:
S=n→∞limSn=n→∞lim2[1−(23)n]=2.
故答案為:2.
點(diǎn)評(píng) 本題考查等比數(shù)列的前n項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 兩個(gè)平面的法向量所成的角是這兩個(gè)平面所成的角 | |
B. | 設(shè)空間向量→a,→b為非零向量,若→a•→b>0,則<→a,→b>為銳角 | |
C. | 方程mx2+ny2=1(m>0,n>0)表示的曲線是橢圓 | |
D. | 等軸雙曲線的漸近線互相垂直,離心率等于√2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com