【題目】執(zhí)行下面的程序框圖,如果輸入的t=0.01,則輸出的n=(
A.5
B.6
C.7
D.8

【答案】C
【解析】解:第一次執(zhí)行循環(huán)體后,S= ,m= ,n=1,不滿足退出循環(huán)的條件; 再次執(zhí)行循環(huán)體后,S= ,m= ,n=2,不滿足退出循環(huán)的條件;
再次執(zhí)行循環(huán)體后,S= ,m= ,n=3,不滿足退出循環(huán)的條件;
再次執(zhí)行循環(huán)體后,S= ,m= ,n=4,不滿足退出循環(huán)的條件;
再次執(zhí)行循環(huán)體后,S= ,m= ,n=5,不滿足退出循環(huán)的條件;
再次執(zhí)行循環(huán)體后,S= ,m= ,n=6,不滿足退出循環(huán)的條件;
再次執(zhí)行循環(huán)體后,S= ,m= ,n=7,滿足退出循環(huán)的條件;
故輸出的n值為7,
故選:C
【考點(diǎn)精析】利用程序框圖對題目進(jìn)行判斷即可得到答案,需要熟知程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究學(xué)生的數(shù)學(xué)核素養(yǎng)與抽象(能力指標(biāo))、推理(能力指標(biāo))、建模(能力指標(biāo))的相關(guān)性,并將它們各自量化為1、2、3三個等級,再用綜合指標(biāo)的值評定學(xué)生的數(shù)學(xué)核心素養(yǎng);若,則數(shù)學(xué)核心素養(yǎng)為一級;若,則數(shù)學(xué)核心素養(yǎng)為二級;若,則數(shù)學(xué)核心素養(yǎng)為三級,為了了解某校學(xué)生的數(shù)學(xué)核素養(yǎng),調(diào)查人員隨機(jī)訪問了某校10名學(xué)生,得到如下結(jié)果:

學(xué)生編號

(1)在這10名學(xué)生中任取兩人,求這兩人的建模能力指標(biāo)相同的概率;

(2)從數(shù)學(xué)核心素養(yǎng)等級是一級的學(xué)生中任取一人,其綜合指標(biāo)為,從數(shù)學(xué)核心素養(yǎng)等級不是一級的學(xué)生中任取一人,其綜合指標(biāo)為,記隨機(jī)變量,求隨機(jī)變量的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的,,,四項(xiàng)參賽作品,只評一項(xiàng)一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項(xiàng)參賽作品預(yù)測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項(xiàng)作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空間四邊形PABC的各邊及對角線長度都相等,D、E、F、G分別是AB、BC、CA、AP的中點(diǎn),下列四個結(jié)論中成立的是
①BC∥平面PDF
②DF⊥平面PAE
③平面GDF∥平面PBC
④平面PAE⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AC⊥BC,E、F分別在線段B1C1和AC上,B1E=3EC1 , AC=BC=CC1=4
(1)求證:BC⊥AC1;
(2)試探究滿足EF∥平面A1ABB1的點(diǎn)F的位置,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩定點(diǎn), 和一動點(diǎn),給出下列結(jié)論:

①若,則點(diǎn)的軌跡是橢圓;

②若,則點(diǎn)的軌跡是雙曲線;

③若,則點(diǎn)的軌跡是圓;

④若,則點(diǎn)的軌跡關(guān)于原點(diǎn)對稱;

⑤若直線斜率之積等于,則點(diǎn)的軌跡是橢圓(除長軸兩端點(diǎn)).

其中正確的是__________(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹的產(chǎn)量(單位:百千克)與肥料費(fèi)用(單位:百元)滿足如下關(guān)系:,且投入的肥料費(fèi)用不超過5百元.此外,還需要投入其他成本(如施肥的人工費(fèi)等)百元.已知這種水蜜桃的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應(yīng)求.記該棵水蜜桃樹獲得的利潤為(單位:百元).

(1)求利潤函數(shù)的函數(shù)關(guān)系式,并寫出定義域;

(2)當(dāng)投入的肥料費(fèi)用為多少時,該水蜜桃樹獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在實(shí)數(shù)集上的圖象是連續(xù)不斷的,且對任意實(shí)數(shù)存在常數(shù)使得恒成立,則稱是一個“關(guān)于函數(shù)”.現(xiàn)有下列“關(guān)于函數(shù)”的結(jié)論:

①常數(shù)函數(shù)是“關(guān)于函數(shù)”;

②正比例函數(shù)必是一個“關(guān)于函數(shù)”;

③“關(guān)于函數(shù)”至少有一個零點(diǎn);

是一個“關(guān)于函數(shù)”.

其中正確結(jié)論的序號是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn) (n∈N*)均在函數(shù)y=3x-2的圖象上.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn<對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

同步練習(xí)冊答案