19.在△ABC中,D是BC的中點(diǎn),AB=4,AC=3,則$\overline{AD}•\overline{BC}$=(  )
A.-7B.2C.$-\frac{7}{2}$D.$\frac{7}{2}$

分析 根據(jù)平面向量的線性表示與數(shù)量積的定義,計(jì)算即可.

解答 解:如圖所示,

△ABC中,D是BC的中點(diǎn),
∴$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BC}$=$\frac{1}{2}$($\overrightarrow{AC}$-$\overrightarrow{AB}$),
∴$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$
=$\overrightarrow{AB}$+$\frac{1}{2}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$,
∴$\overline{AD}•\overline{BC}$=($\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$)•($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=$\frac{1}{2}$(${\overrightarrow{AC}}^{2}$-${\overrightarrow{AB}}^{2}$)
=$\frac{1}{2}$×(32-42
=-$\frac{7}{2}$.
故選:C.

點(diǎn)評(píng) 本題考查了平面向量的線性表示與數(shù)量積的運(yùn)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若S9=27,則a4+a6=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)滿(mǎn)足:對(duì)任意的x1、x2(x1≠x2),均有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,則( 。
A.$f({0.7^6})<f({log_{0.7}}6)<f({6^{0.5}})$B.f(60.5)<f(0.76)<f(log0.76)
C.$f({log_{0.7}}6)<f({0.7^6})<f({6^{0.5}})$D.$f({log_{0.7}}6)<f({6^{0.5}})<f({0.7^6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)i為虛數(shù)單位,復(fù)數(shù)z=(a3-a)+$\frac{a}{(1-a)}$i,(a∈R)為純虛數(shù),則a的值為(  )
A.-1B.1C.±1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知銳角在△ABC中,b=10,c=5$\sqrt{6}$,C=60°求
(1)外接圓半徑;         
(2)求角B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若集合A={x|y=lgx},$B=\left\{{x\left|{\frac{2x+1}{3-x}}\right.<0}\right\}$,則A∩B=(  )
A.$(-∞,-\frac{1}{2})$B.(3,+∞)C.$(-∞,-\frac{1}{2})∪(3,+∞)$D.(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)點(diǎn)P(x,y),x,y∈N且x+y≤4,則點(diǎn)P(x,y)的個(gè)數(shù)為( 。
A.12個(gè)B.13個(gè)C.14個(gè)D.15個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1}{2}$x2+lnx,求函數(shù)f(x)在區(qū)間[1,e]上的最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.以下四個(gè)命題:
①若函數(shù)y=ex-mx(m∈R)有大于零的極值點(diǎn),則實(shí)數(shù)m>1;
②命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④已知函數(shù)f(x)=x3+ax2+bx-a2-7a在x=1處取得極大值10,則$\frac{a}$的值為-2或$-\frac{2}{3}$.
其中真命題的序號(hào)為①②③(寫(xiě)出所有真命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案