A. | [-15,+∞) | B. | (-∞,2-12$\sqrt{2}$] | C. | (-∞,-16] | D. | (-∞,-15] |
分析 由題意可得3x2+(a-2)x+24≤0,即有2-a≥$\frac{3{x}^{2}+24}{x}$=3x+$\frac{24}{x}$,運(yùn)用基本不等式求得到成立的條件,再由x的范圍,可得最小值,運(yùn)用存在性問題的解法,解不等式即可得到所求范圍.
解答 解:f(x)≤2,即為$\frac{3{x}^{2}+ax+26}{x+1}$≤2,
由x∈N*,可得3x2+(a-2)x+24≤0,
即有2-a≥$\frac{3{x}^{2}+24}{x}$=3x+$\frac{24}{x}$,
由3x+$\frac{24}{x}$≥2$\sqrt{3x•\frac{24}{x}}$=12$\sqrt{2}$,
當(dāng)且僅當(dāng)x=2$\sqrt{2}$∉N,
由x=2可得6+12=18;x=3時(shí),可得9+8=17,
可得3x+$\frac{24}{x}$的最小值為17,
由存在x∈N*使得f(x)≤2成立,
可得2-a≥17,
解得a≤-15.
故選:D.
點(diǎn)評 本題考查不等式存在性問題的解法,注意運(yùn)用參數(shù)分離和函數(shù)的最值的求法,考查化簡整理的運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | b<a<c | C. | c<b<a | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com