19.已知a>$\frac{1}{2}$,且a≠1,條件p:函數(shù)f(x)=log(2a-1)x在其定義域上是減函數(shù);
條件q:函數(shù)g(x)=$\sqrt{x+|x-a|-2}$的定義域為R,如果“p或q”為真,試求a的取值范圍.

分析 條件p:由于函數(shù)f(x)是減函數(shù),可得$\left\{\begin{array}{l}{a>\frac{1}{2}}\\{a≠1}\\{0<2a-1<1}\end{array}\right.$;條件q:函數(shù)g(x)=$\sqrt{x+|x-a|-2}$的定義域為R,可得?x∈R,x+|x-a|-2≥0恒成立,如圖所示,即可得出.

解答 解:條件p:函數(shù)f(x)=log(2a-1)x在其定義域上是減函數(shù),
∴$\left\{\begin{array}{l}{a>\frac{1}{2}}\\{a≠1}\\{0<2a-1<1}\end{array}\right.$,
解得$\frac{1}{2}<a<1$;
條件q:函數(shù)g(x)=$\sqrt{x+|x-a|-2}$的定義域為R,
∴?x∈R,x+|x-a|-2≥0恒成立,即|x-a|≥2-x,
分別畫出函數(shù):y=2-x,y=|x-a|的圖象,
由圖可知:a≥2.
∵“p或q”為真,
∴p與q至少有一個為真命題.
∴a的取值范圍是$(\frac{1}{2},1)$∪[2,+∞).

點評 本題考查了函數(shù)的圖象與性質(zhì)、簡易邏輯的判定方法,考查了數(shù)形結(jié)合方法、推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在數(shù)列{an}中,a1=-1,an+1=an-3,則a4=( 。
A.-10B.-7C.-5D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c,S△ABC=$\frac{1}{2}$b2sinB,且bsinA-$\sqrt{3}$acosB=0,則$\frac{sinA+sinC}{sinB}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若a>0,b>0,a+b=2,則下列不等式命題中正確的個數(shù)是( 。
(1)ab≤1  (2)$\sqrt{2a+1}$+$\sqrt{2b+1}$$≤2\sqrt{2}$  (3)a2+b2≥2  (4)a3+b3≥3  (5)$\frac{1}{a}+\frac{1}≥2$  (6)$\frac{5-2ab}{{a}^{2}+^{2}}≤\frac{3}{2}$(7)a4+b4∈[2,16)(8)a2+2b2∈[$\frac{8}{3}$,8)(9)(a+$\frac{1}{a}$)(b+$\frac{1}$)≥4  (10)(a-$\frac{2}$)(b+$\frac{1}{a}$)≤-2.
A.5個B.6個C.7個D.8個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\frac{3{x}^{2}+ax+26}{x+1}$,若存在x∈N*使得f(x)≤2成立,則實數(shù)a的取值范圍為( 。
A.[-15,+∞)B.(-∞,2-12$\sqrt{2}$]C.(-∞,-16]D.(-∞,-15]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在數(shù)列{an}中,已知a1=1,a2=2,an+2=$\left\{\begin{array}{l}{{a}_{n}+2,n=2k-1}\\{{3a}_{n},n=2k}\end{array}\right.$(k∈N*).
(1)求數(shù)列{an}的通項公式;
(2)求滿足2an+1=an+an+2的正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)X1~N(0,1),X2~N(1,1),X3~N(0,9),下列答案正確的是( 。
A.P(|X1|<1)=P(|X2|<1)=P(|X3|<1)B.P(|X1|<1)=P(|X2-1|<1)=P(|X3-1|<1)
C.P(|X1|<1)=P(|X2|<1)=P(|X3|<3)D.P(|X1|<1)=P(|X2-1|<1)=P(|X3|<3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知角α的終邊落在射線2x-y=0上,求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$+sin2α-3sinαcosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若i為虛數(shù)單位,復(fù)數(shù)z=$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$i,則z2016的值是(  )
A.-1B.-iC.iD.1

查看答案和解析>>

同步練習(xí)冊答案