12.拋物線y2=2px(p>0)上一點M(2,m)到焦點的距離為3,則p=2.

分析 依題意知,其準線方程為:x=-$\frac{p}{2}$,利用定義,將拋物線上的點到焦點的距離,轉(zhuǎn)化為它到準線的距離即可.

解答 解:拋物線y2=2px(p>0)的準線方程為:x=-$\frac{p}{2}$,
由拋物線的定義知,2-(-$\frac{p}{2}$)=3,
解得:p=2,
故答案為:2.

點評 本題考查拋物線的簡單性質(zhì),考查轉(zhuǎn)化思想,熟練應(yīng)用定義是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知點P(-1,2),線段PQ的中點M的坐標為(1,-1).若向量$\overrightarrow{PQ}$與向量a=(λ,1)共線,則λ=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,江的兩岸可近似的看成兩平行的直線,江岸的一側(cè)有A,B兩個蔬菜基地,江的另一側(cè)點C處有一個超市.已知A、B、C中任意兩點間的距離為20千米.超市欲在AB之間建一個運輸中轉(zhuǎn)站D,A,B兩處的蔬菜運抵D處后,再統(tǒng)一經(jīng)過貨輪運抵C處.由于A,B兩處蔬菜的差異,這兩處的運輸費用也不同.如果從A處出發(fā)的運輸費為每千米2元,從B處出發(fā)的運輸費為每千米1元,貨輪的運輸費為每千米3元. 
(1)設(shè)∠ADC=α,試將運輸總費用S(單位:元)表示為α的函數(shù)S(α),并寫出自變量的取值范圍;
(2)問中轉(zhuǎn)站D建在何處時,運輸總費用S最。坎⑶蟪鲎钚≈担

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知fn(x)=$\sum_{k=0}^{n}$C${\;}_{n}^{k}$xk(n∈N*).
(1)若g(x)=f4(x)+2f5(x)+3f6(x),求g(x)中含x4項的系數(shù);
(2)證明:C${\;}_{m+1}^{0}$+2C${\;}_{m+2}^{1}$+3C${\;}_{m+3}^{2}$+…+nC${\;}_{m+n}^{n-1}$=[$\frac{(m+2)n+1}{m+3}$]C${\;}_{m+n+1}^{m+2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=axex,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x+b.
(1)求實數(shù)a,b的值;
(2)設(shè)函數(shù)g(x)=f(x)-x2-2x,求函數(shù)g(x)的單調(diào)區(qū)間;
(3)在(2)的條件下,是否存在實數(shù)k,使得對于任意的x∈(-∞,0),都有g(shù)(x)≤kx恒成立?若存在,求出實數(shù)k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=|2x-1|-|x+2|.
(Ⅰ)解不等式f(x)>3;
(Ⅱ)若?x0∈R,使得f(x0)+2m2<4m,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C的中心在原點,一個焦點為F(0,$\sqrt{3}$),且橢圓C經(jīng)過點P($\frac{1}{2}$,$\sqrt{3}$).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點M(0,1)的斜率不為0的直線與橢圓交于A、B兩點,A關(guān)于y軸的對稱點為A′,求證:A′B恒過y軸上的一個定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,已知A=45°,B=105°,則$\frac{a}{c}$的值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.利用數(shù)學(xué)歸納法證明不等式“1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}-1}$<n(n≥2,n∈N*)”的過程中,由“n=k”變到“n=k+1”時,左邊增加的項數(shù)有( 。
A.1項B.2k-1C.2kD.2k+1

查看答案和解析>>

同步練習(xí)冊答案