【題目】△ABC,滿足bcosC+ bsinC﹣a﹣c=0
(1)求角B的值;
(2)若a=2,且AC邊上的中線BD長為 ,求△ABC的面積.

【答案】
(1)解:由已知條件得:

∵sinC>0得 ,∴

,∴ ,∴


(2)解:由已知得: + =2 ,平方得: 2+ 2+2 =4 2,

即c2+a2+2cacos =84,

又a=2,∴c2+2c﹣80=0

解得:c=8或c=﹣2(舍去)

∴SABC= =4


【解析】(1)由已知條件,利用正弦定理,結(jié)合輔助角公式,即可求角B的值;(2)若a=2,且AC邊上的中線BD長為 ,建立關(guān)于c的方程,利用三角形的面積公式求△ABC的面積.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用余弦定理的定義的相關(guān)知識(shí)可以得到問題的答案,需要掌握余弦定理:;;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且,則 的值(

A. 恒為正數(shù) B. 恒等于零

C. 恒為負(fù)數(shù) D. 可能大于零,也可能小于零

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為2,有一個(gè)銳角為60°的菱形ABCD,沿著較短的對角線BD對折,使得,OBD的中點(diǎn).

Ⅰ)求證:

Ⅱ)求三棱錐的體積;

Ⅲ)求二面角A-BC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|﹣|x+3|,a∈R.
(1)當(dāng)a=﹣1時(shí),解不等式f(x)≤1;
(2)若當(dāng)x∈[0,3]時(shí),f(x)≤4,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為, 的中點(diǎn), 為線段上的動(dòng)點(diǎn),過點(diǎn), , 的平面截該正方體所得的截面為,則下列命題正確的是__________(寫出所有正確命題的編號(hào)).

①當(dāng)時(shí), 為四邊形;②當(dāng)時(shí), 為等腰梯形;

③當(dāng)時(shí), 的交點(diǎn)滿足;

④當(dāng)時(shí), 為五邊形;

⑤當(dāng)時(shí), 的面積為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的左頂點(diǎn)為(﹣2,0),離心率為

(1)求橢圓C的方程;
(2)已知直線l過點(diǎn)S(4,0),與橢圓C交于P,Q兩點(diǎn),點(diǎn)P關(guān)于x軸的對稱點(diǎn)為P′,P′與Q兩點(diǎn)的連線交x軸于點(diǎn)T,當(dāng)△PQT的面積最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)平面內(nèi)到點(diǎn)和直線的距離相等的點(diǎn)的軌跡為曲線,則曲線的方程為_______;若直線與曲線相交于不同兩點(diǎn), ,與圓相切于點(diǎn),且為線段的中點(diǎn).在的變化過程中,滿足條件的直線條,則的所有可能值為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】各棱長都等于4的四面ABCD中,設(shè)G為BC的中點(diǎn),E為△ACD內(nèi)的動(dòng)點(diǎn)(含邊界),且GE∥平面ABD,若 =1,則| |=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司的管理者通過公司近年來科研費(fèi)用支出x(百萬元)與公司所獲得利潤y(百萬元)的散點(diǎn)圖發(fā)現(xiàn),y與x之間具有線性相關(guān)關(guān)系,具體數(shù)據(jù)如下表:

年份

2010

2011

2012

2013

2014

科研費(fèi)用x(百萬元)

1.6

1.7

1.8

1.9

2.0

公司所獲利潤y(百萬元)

1

1.5

2

2.5

3

(1)求y關(guān)于x的回歸直線方程;

(2)若該公司的科研投入從2011年開始連續(xù)10年每一年都比上一年增加10萬元,預(yù)測2017年該公司可獲得的利潤約為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案