分析 利用已知條件求出函數(shù)的對(duì)稱軸與函數(shù)的對(duì)稱中心,推出函數(shù)的周期,然后求解函數(shù)值.
解答 解:由函數(shù)f(x)是定義在R上的奇函數(shù),其圖象是一條連續(xù)不斷的曲線,且$f(\frac{1}{2}+x)=f(\frac{1}{2}-x)$,函數(shù)的對(duì)稱軸為:${x_對(duì)}=\frac{1}{2}$,對(duì)稱中心(0,0),則T=2,
f(2016)=f(0)=0.
故答案為:0.
點(diǎn)評(píng) 本題考查對(duì)稱性、周期性,函數(shù)的奇偶性的應(yīng)用,屬容易題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3x-2y+6=0 | B. | 3x+2y+1=0 | C. | 3x-2y-6=0 | D. | 3x-2y+1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\sqrt{2}$,$\sqrt{2}$) | B. | (-$\sqrt{2}$,$\sqrt{2}$) | C. | ($\sqrt{2}$,-$\sqrt{2}$) | D. | (-$\sqrt{2}$,-$\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com