5.在△ABC中,角A,B,C所對(duì)的邊分為a,b,c,向量$\overrightarrow m$=(2b-c,a),$\overrightarrow n$=(cosC,cosA),且$\overrightarrow m∥\overrightarrow n$.
(1)求角A的大。
(2)若$\overrightarrow{AB}•\overrightarrow{AC}$=4,求邊a的最小值.

分析 (1)由題意,利用向量平行的坐標(biāo)表示,正弦定理可得關(guān)于cosA 的方程,從而可求cosA,進(jìn)而可求A.
(2)由平面向量的數(shù)量積的運(yùn)算可求bc=8,進(jìn)而利用余弦定理可求a的最小值.

解答 (本小題滿分12分)
解:(1)∵向量$\overrightarrow m$=(2b-c,a),$\overrightarrow n$=(cosC,cosA),且$\overrightarrow m∥\overrightarrow n$,
∴可得:(2b-c)cosA-acosC=0,
由正弦定理得:(4sinB-2sinC)cosA-2sinAcosC=0,
即:2sinBcosA=sin(A+C)=sinB,
∵sinB≠0,
∴2cosA=1,
∴A=60°.…(6分)
(2)∵$\overrightarrow{AB}•\overrightarrow{AC}$=4,可得:bccos60°=4,解得:bc=8,
又a2=b2+c2-2bccos60°≥2bc-bc=bc=8,
當(dāng)且僅當(dāng)b=c=2$\sqrt{2}$時(shí),取等號(hào),
∴amin=2$\sqrt{2}$.…(12分)

點(diǎn)評(píng) 本題主要考查了向量平行的坐標(biāo)表示,正弦定理,平面向量的數(shù)量積的運(yùn)算,余弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.△ABC1和△ABC2是兩個(gè)腰長(zhǎng)均為1的等腰直角三角形,當(dāng)二面角C1-AB-C2為60°時(shí),點(diǎn)C1和C2之間的距離等于$\sqrt{2},1,\frac{{\sqrt{2}}}{2}$.(請(qǐng)寫(xiě)出所有可能的值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若直線l∥平面α,直線a?α,則直線l與直線a的位置關(guān)系是( 。
A.l∥aB.l與a沒(méi)有公共點(diǎn)C.l與a相交D.l與a異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知雙曲線焦點(diǎn)在 x軸上,虛軸長(zhǎng)為12,離心率為 $\frac{5}{4}$,求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=$\frac{1}{3}{x}^{3}+\frac{1}{2}a{x}^{2}+2bx+c(a,b,c∈R)$,且函數(shù)f(x)在區(qū)間(0,1)內(nèi)取得極大值,在區(qū)間(1,2)內(nèi)取得極小值,則z=(a+3)2+b2的取值范圍為($\frac{1}{2}$,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列命題正確的是( 。
A.兩兩相交的三條直線可確定一個(gè)平面
B.兩個(gè)平面與第三個(gè)平面所成的角都相等,則這兩個(gè)平面一定平行
C.過(guò)平面外一點(diǎn)的直線與這個(gè)平面只能相交或平行
D.和兩條異面直線都相交的兩條直線一定是異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知數(shù)列{an}的前n和為Sn,a1=0,an+1=an+2$\sqrt{{a}_{n}+1}$+1,則a5+S4=( 。
A.39B.45C.50D.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)函數(shù)f(x)=4cos(ωx+φ)對(duì)任意的x∈R,都有$f(-x)=f(\frac{π}{3}+x)$,若函數(shù)g(x)=sin(ωx+φ)-2,則$g(\frac{π}{6})$的值是( 。
A.1B.-5或3C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{99×100}$=( 。
A.-$\frac{99}{100}$B.$\frac{99}{100}$C.-$\frac{100}{99}$D.$\frac{100}{99}$

查看答案和解析>>

同步練習(xí)冊(cè)答案