A. | 39 | B. | 45 | C. | 50 | D. | 55 |
分析 推導(dǎo)出{$\sqrt{{a}_{n}+1}$}是首項(xiàng)為1,公差為1的等差數(shù)列,從而${a}_{n}={n}^{2}-1$,由此能求出a5+S4的值.
解答 解:∵數(shù)列{an}的前n和為Sn,a1=0,an+1=an+2$\sqrt{{a}_{n}+1}$+1,
∴$\sqrt{{a}_{n+1}+1}-\sqrt{{a}_{n}+1}$=1,$\sqrt{{a}_{1}+1}=0$,
∴{$\sqrt{{a}_{n}+1}$}是首項(xiàng)為1,公差為1的等差數(shù)列,
∴$\sqrt{{a}_{n}+1}$=1+(n-1)×1=n,
∴${a}_{n}={n}^{2}-1$,
∴${a}_{5}={5}^{2}-1$=24,
${S}_{4}={1}^{2}+{2}^{2}+{3}^{2}+{4}^{2}-4$=26.
∴a5+S4=24+26=50.
故選:C.
點(diǎn)評(píng) 本題考查數(shù)列的前5項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意構(gòu)造法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,s甲2>s乙2 | B. | $\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,s甲2<s乙2 | ||
C. | $\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,s甲2>s乙2 | D. | $\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,s甲2<s乙2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}π{R^2}$ | B. | $\frac{{\sqrt{3}}}{2}π{R^2}$ | C. | πR2 | D. | $\frac{3}{4}π{R^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 2 | C. | 3 | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{72}{13}$ | B. | $\frac{135}{22}$ | C. | $\frac{79}{14}$ | D. | $\frac{142}{23}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2$\sqrt{3}$] | B. | [2,+∞) | C. | (-∞,-2$\sqrt{3}$]∪[2$\sqrt{3}$,+∞) | D. | (-∞,-2$\sqrt{3}$)∪(2$\sqrt{3}$,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com