【題目】在平面直角坐標(biāo)系中,已知圓的方程為,點(diǎn)的坐標(biāo)為.
(1)求過點(diǎn)且與圓相切的直線方程;
(2)過點(diǎn)任作一條直線與圓交于不同兩點(diǎn),,且圓交軸正半軸于點(diǎn),求證:直線與的斜率之和為定值.
【答案】(1)或(2)詳見解析
【解析】
(1)當(dāng)直線的斜率不存在時(shí),直線滿足題意,當(dāng)直線的斜率存在時(shí),設(shè)切線方程為,圓心到直線的距離等于半徑,列式子求解即可求出,即可得到切線方程;(2)設(shè)直線:,代入圓的方程,可得到關(guān)于的一元二次方程,設(shè),,且,直線與的斜率之和為,代入根與系數(shù)關(guān)系整理可得到所求定值。
(1)當(dāng)直線的斜率不存在時(shí),顯然直線與圓相切
當(dāng)直線的斜率存在時(shí),設(shè)切線方程為,
圓心到直線的距離等于半徑,即,解得,切線方程為:,
綜上,過點(diǎn)且與圓相切的直線的方程是或
(2)圓:與軸正半軸的交點(diǎn)為,依題意可得直線的斜率存在且不為0,設(shè)直線:,代入圓:,
整理得:.
設(shè),,且
∴,
∴直線與的斜率之和為
為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知美國蘋果公司生產(chǎn)某款iPhone手機(jī)的年固定成本為40萬美元,每生產(chǎn)1萬只還需另投入16萬美元.設(shè)蘋果公司一年內(nèi)共生產(chǎn)該款iPhone手機(jī)x萬只并全部銷售完,每萬只的銷售收入為R(x)萬美元,且R(x)=
(1)寫出年利潤W(萬美元)關(guān)于年產(chǎn)量x(萬只)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬只時(shí),蘋果公司在該款iPhone手機(jī)的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)和直線:,設(shè)圓的半徑為1,圓心在直線上.
(Ⅰ)若圓心也在直線上,過點(diǎn)作圓的切線.
(1)求圓的方程;(2)求切線的方程;
(Ⅱ)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】日前,揚(yáng)州下達(dá)了2018年城市建設(shè)和環(huán)境提升重點(diǎn)工程項(xiàng)目計(jì)劃,其中將對(duì)一塊以O為圓心,R(R為常數(shù),單位:米)為半徑的半圓形荒地進(jìn)行治理改造,如圖所示,△OBD區(qū)域用于兒童樂園出租,弓形BCD區(qū)域(陰影部分)種植草坪,其余區(qū)域用于種植觀賞植物.已知種植草坪和觀賞植物的成本分別是每平方米5元和55元,兒童樂園出租的利潤是每平方米95元.
(1)設(shè)∠BOD=θ(單位:弧度),用θ表示弓形BCD的面積S弓=f(θ);
(2)如果市規(guī)劃局邀請(qǐng)你規(guī)劃這塊土地,如何設(shè)計(jì)∠BOD的大小才能使總利潤最大?并求出該最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)據(jù)顯示,某公司2018年上半年五個(gè)月的收入情況如下表所示:
月份 | 2 | 3 | 4 | 5 | 6 |
月收入(萬元) | 1.4 | 2.56 | 5.31 | 11 | 21.3 |
根據(jù)上述數(shù)據(jù),在建立該公司2018年月收入(萬元)與月份的函數(shù)模型時(shí),給出兩個(gè)函數(shù)模型與供選擇.
(1)你認(rèn)為哪個(gè)函數(shù)模型較好,并簡單說明理由;
(2)試用你認(rèn)為較好的函數(shù)模型,分析大約從第幾個(gè)月份開始,該公司的月收入會(huì)超過100萬元?(參考數(shù)據(jù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于定義在上的函數(shù),有下列四個(gè)命題:
①若是奇函數(shù),則的圖象關(guān)于點(diǎn)對(duì)稱;
②若對(duì),有,則的圖象關(guān)于直線對(duì)稱;
③若對(duì),有,則的圖象關(guān)于點(diǎn)對(duì)稱;
④函數(shù)與函數(shù)的圖像關(guān)于直線對(duì)稱.
其中正確命題的序號(hào)為__________.(把你認(rèn)為正確命題的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線:和圓:.
(1)求證:直線恒過一定點(diǎn);
(2)試求當(dāng)為何值時(shí),直線被圓所截得的弦長最短;
(3)在(2)的前提下,直線是過點(diǎn),且與直線平行的直線,求圓心在直線上,且與圓相外切的動(dòng)圓中半徑最小圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是定義在正整數(shù)集上的函數(shù),且滿足:當(dāng)成立時(shí),總可推出
成立,那么下列命題總成立的是( )
A. 若成立,則成立;
B. 若成立,則成立;
C. 若成立,則當(dāng)時(shí),均有成立;
D. 若成立,則當(dāng)時(shí),均有成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com