17.若復(fù)數(shù)z滿足$\frac{z}{2+i}$=i2015+i2016(i為虛數(shù)單位),則|z|=$\sqrt{10}$.

分析 利用虛數(shù)單位i的運(yùn)算性質(zhì)化簡(jiǎn),再由復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡(jiǎn)得到復(fù)數(shù)z,然后由復(fù)數(shù)求模公式計(jì)算得答案.

解答 解:由$\frac{z}{2+i}$=i2015+i2016=(i4503•i3+(i4504=1-i,
得z=(1-i)(2+i)=2+i-2i-i2=3-i.
則|z|=$\sqrt{{3}^{2}+(-1)^{2}}=\sqrt{10}$.
故答案為:$\sqrt{10}$.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,虛數(shù)單位i的運(yùn)算性質(zhì),考查了復(fù)數(shù)求模公式的運(yùn)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖所示的鐵片由兩部分組成,半徑為1的半圓O及等腰直角△EFH,其中FE⊥FH.現(xiàn)將鐵片裁剪成盡可能大的梯形鐵片ABCD(不計(jì)損耗),AD∥BC,且點(diǎn)A,B在弧$\widehat{EF}$上.點(diǎn)C,D在斜邊EH上.設(shè)∠AOE=θ.
(1)求梯形鐵片ABCD的面積S關(guān)于θ的函數(shù)關(guān)系式;
(2)試確定θ的值,使得梯形鐵片ABCD的面積S最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)曲線y=f(x)的切線斜率為-x+2,且過(guò)點(diǎn)(2,5),求該曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)求函數(shù)f(x)在[-$\frac{3π}{8}$,$\frac{π}{4}$]上的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在斜△ABC中,由A+B+C=π,得A+B=π-C,則tan(A+B)=tan(π-C),化簡(jiǎn)得tanA+tanB+tanC=tanAtanBtanC.類比上述方法,若正角α,β,γ滿足α+β+γ=$\frac{π}{2}$,則tanα,tanβ,tanγ滿足的結(jié)論為tanαtanβ+tanαtanγ+tanβtanγ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.用C(A)表示非空集合A中的元素個(gè)數(shù),定義A*B=$\left\{\begin{array}{l}C(A)-C(B),當(dāng)C(A)≥C(B)\\ C(B)-C(A),當(dāng)C(A)<C(B)\end{array}$,若A={x|x2-ax-2=0,a∈R},B={x||x2+bx+2|=2,b∈R},且A*B=2,則b的取值范圍(  )
A.b≥2$\sqrt{2}$或b≤-2$\sqrt{2}$B.b>2$\sqrt{2}$或b<-2$\sqrt{2}$C.b≥4或b≤-4D.b>4或b<-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.用0,1,2,3,4這五個(gè)數(shù)字,可以組成有重復(fù)的三位數(shù)的個(gè)數(shù)為( 。
A.52B.60C.100D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(x,-1),且$\overrightarrow{a}$∥$\overrightarrow$,則x等于( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.一個(gè)口袋中裝有大小和質(zhì)地都相同的3個(gè)紅球、3個(gè)白球和2個(gè)黑球.
(1)從袋中取出3個(gè)球,求取出的球恰有兩種顏色的概率;
(2)若取一個(gè)紅球記3分,取一個(gè)白球記2分,取一個(gè)黑球記1分,現(xiàn)從袋中任取3個(gè)球,求總分不小于6分的概率;
(3)依次不放回的從口袋中取球,每次任取1個(gè),直到取出所有的黑球就停止取球,求停止取球時(shí),口袋中至少有3個(gè)球的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案