【題目】甲、乙、丙、丁四名同學在回憶同一個函數(shù),甲說:我記得該函數(shù)定義域為,還是奇函數(shù)”.乙說:我記得該函數(shù)為偶函數(shù),值域不是”.丙說:我記得該函數(shù)定義域為,還是單調(diào)函數(shù)”.丁說:我記得該函數(shù)的圖象有對稱軸,值域是,若每個人的話都只對了一半,則下列函數(shù)中不可能是該函數(shù)的是(

A. B.

C. D.

【答案】D

【解析】

依次分析每個選項是否符合題意,即可做出判斷。

選項A:甲前半句對,后半句不對;乙前半句錯,后半句對;丙前半句對,后半句錯,丁前半句對,后半句錯,故可能是A

選項B:甲前半句對,后半句不對;乙前半句錯,后半句對;丙前半句對,后半句錯,丁前半句對,后半句錯,故可能是B;

選項C:甲前半句對,后半句不對;乙前半句錯,后半句對;丙前半句對,后半句錯,丁前半句對,后半句錯,故可能是C;

選項D:丙說的全對,故不符合題意,故選D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】乙兩人同時參加一次數(shù)學測試,共有20道選擇題,每題均有4個選項,答對得3,答錯或不答得0,甲和乙都解答了所有的試題,經(jīng)比較,他們只有2道題的選項不同,如果甲最終的得分為54,那么乙的所有可能的得分值組成的集合為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大型商場的空調(diào)在1月到5月的銷售量與月份相關,得到的統(tǒng)計數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷量(百臺)

0.6

0.8

1.2

1.6

1.8

(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調(diào)的月銷量(百件)與月份之間的相關關系.請用最小二乘法求關于的線性回歸方程,并預測6月份該商場空調(diào)的銷售量;

(2)若該商場的營銷部對空調(diào)進行新一輪促銷,對7月到12月有購買空調(diào)意愿的顧客進行問卷調(diào)查.假設該地擬購買空調(diào)的消費群體十分龐大,經(jīng)過營銷部調(diào)研機構對其中的500名顧客進行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:

有購買意愿對應的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機抽取6名,再從這6人中隨機抽取3人進行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.

參考公式與數(shù)據(jù):線性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用合適的方法表示下列集合,并說明是有限集還是無限集.

1)到A、B兩點距離相等的點的集合

2)滿足不等式的集合

3)全體偶數(shù)

4)被5除余1的數(shù)

520以內(nèi)的質數(shù)

6

7)方程的解集

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程是,以極點為原點,以極軸為軸的正半軸,取相同的單位長度,建立平面直角坐標系,直線的參數(shù)方程為 .

(1)寫出直線的普通方程與曲線的直角坐標方程;

(2)設曲線經(jīng)過伸縮變換得到曲線,曲線上任一點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某輛汽車以千米/小時的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求)時,每小時的油耗(所需要的汽油量)為升,其中為常數(shù),且

(1)若汽車以千米/小時的速度行駛時,每小時的油耗為升,欲使每小時的油耗不超過升,求的取值范圍;

(2)求該汽車行駛千米的油耗的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù)

⑴若的定義域為,求實數(shù)的取值范圍;

⑵當,求函數(shù)的最小值;

⑶是否存在實數(shù),使得函數(shù)的定義域為,值域為?若存在,求出的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1.若函數(shù)處有極值10,求的解析式;

2.時,若函數(shù)上是單調(diào)增函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,橢圓的四個頂點圍成的四邊形的面積為4.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)直線與橢圓交于, 兩點, 的中點在圓上,求為坐標原點)面積的最大值.

查看答案和解析>>

同步練習冊答案