x | 0 | 1 | 2 | 3 | 4 |
y | 1 | 1.3 | 3.2 | 5.6 | 8.9 |
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | -$\frac{1}{2}$ |
分析 令t=x2,則回歸直線方程為y=$\frac{1}{2}$t+a,求得$\overline{t}$和$\overline{y}$,代入回歸直線y=y=$\frac{1}{2}$t+a,求得a的值.
解答 解:由y=$\frac{1}{2}$x2+a,將t=x2,則所有樣本點(diǎn)(xi,yi)(i=1,2,3,4,5)都在直線y=$\frac{1}{2}$t+a,
則$\overline{t}=\frac{0+1+4+9+16}{5}$=6,$\overline{y}=\frac{1+1.3+3.2+5.6+8.9}{5}$=4,
將(6,4)代入回歸方程求得a=1,
故答案為:A.
點(diǎn)評 本題考查的知識點(diǎn)是線性回歸直線的性質(zhì),由線性回歸直線方程中系數(shù)的求法,我們可知($\overline{x}$,$\overline{y}$)在回歸直線上,滿足回歸直線的方程,我們根據(jù)已知表中數(shù)據(jù)計(jì)算出($\overline{x}$,$\overline{y}$),再將點(diǎn)的坐標(biāo)代入回歸直線方程,即可求出對應(yīng)的a值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-$\frac{1}{2}$) | B. | (-∞,-$\frac{1}{2}$] | C. | (-∞,-2] | D. | (-∞,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com